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Abstract

Multisensor Data Fusion deals with combining data from sensors spread over a
geographically dispersed area. The sensors are mobile and change location with time.
In order to collect data and process the data from these sensors, an equally flexible
network of fusion beds (ClusterHeads) is required. Also the links between the sensors
and clusterheads are prone to enemy attack and jamming or foliage effects may exist.
In this work we develop a Mixed Integer Linear Programming model to determine the
optimal clusterhead location strategy that maximizes the expected data covered over
a period of time. The model is termed as Dynamic MEXCLP (Maximum Expected
Covering Location Problem). Also the network of clusterheads can reorganise itself
from time to time. Two greedy heuristics are proposed to solve the Dynamic MEX-
CLP and their worst case behavior is presented. Also a Column Generation technique
is adopted to improve the heuristic solution for cases where solution quality is the
prime concern. Computational experiments show that the Column Generation ap-
proach in conjunction with the heuristics performs much better than CPLEX in terms

of solution time. Also the optimality gap is less than 5%.
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Chapter 1

Introduction and Literature
Review

1.1 Introduction

Location of a facility is a critical strategic planning decision that plays a key role in
determining the success of an industry or a service provider. It is also a crucial as-
pect for efficient utilization of resources. Some common examples of facility location
problems encountered in practice are a retail chain siting a new outlet, a manufac-
turer locating a new warehouse and a city planner determining locations for schools,
emergency facilities like firestations, ambulance bases, etc. An efficient location of a
facility immensely helps a service provider to gain advantage over its competitors.
Location problems discussed in the literature are classified according to various

objectives as follows:
1. Center Problem
2. Median Problem
3. Covering Problem

The objective of the Center Problem is to open a given number of facilities and
assign each demand node to exactly one of them such that the maximum distance

(weighted or unweighted) from any open facility to any of the demand nodes assigned



to it is minimized. Locating a fire extinguisher in a manufacturing facility constitutes
a facility location problem with center objective.

The objective of the Median Problem is to locate a given number of facilities such
that the sum of the weighted distances (or travel times) between demand nodes and
the closest facility is minimized.

In some location problems selecting locations which minimize the average distance
travelled or maximum distance travelled may not be appropriate. The critical nature
of the demands in such problems require the service to be available within a prespec-
ified time or to be within a threshold distance. To locate such facilities, the primary
issue is “coverage”. A demand node is said to be covered if it lies within a threshold
distance (or time) of at least one facility. Location of emergency facilites like fire
engines or ambulances is typically modeled as a covering problem.

Covering location problems are classified as:

1. Set Covering Location Problem (SCLP): The objective of the SCLP is to mini-
mize the total number of facilities to be located such that all the demand nodes
are within a threshold distance of the closest facility. Toregas et al. [62] was

the first to introduce the SCLP.

2. Maximal Covering Location Problem (MCLP): The objective of the MCLP is
to maximize the number of demand nodes covered with a limited number of

resources (facilities). Church and Revelle [26] introduced the MCLP.

All covering problems encountered in the literature fall in the genre of either SCLP
or MCLP. All models cited in the literature are basically variant of the SCLP or
the MCLP. SCLP and MCLP have also been classified according to the deterministic
and stochastic nature of the problem. Toregas [62] and Church and Revelle [26] deal
with the deterministic version of the SCLP and MCLP respectively. Chapman and
White [20] introduced the stochastic SCLP considering the unavailability of facilities
at certain times. Daskin [29] considered the probability of facility being unable to

serve a demand node at all times and modeled the Maximum Expected Covering
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Location Problem (MEXCLP) as a variant of the MCLP to maximize the expected
demand covered.

In this work, a critical scenario encountered in a military application is modeled as
a variant of the Maximal covering location problem. The application deals with gath-
ering intelligence. One of the key techniques to achieve intelligence is Data Fusion.
Data Fusion deals with combining information from various sources to determine the
situation or threat in the system.

Data Fusion can be formally defined as “a multilevel, multifaceted process dealing
with detection, association, correlation, estimation and combination of data and in-
formation from multiple sources to achieve refined state and identity estimation, and
complete and timely assessments of situation and threat” [1].

The combination of data from multiple sensors is termed as MultiSensor Data
Fusion Process. The fusion of data from multiple sensors facilitates a better judgment
of the scenario since we get multiple input to verify the authenticity of the information.
Now these sensors (sources of information) can lie in different geographical regions
or at a distance from each other. In order to fuse data (information) from all these
sensors, the data has to be sent to the location where it is going to be fused.

In a non-wartime situation with all the sensors being static and the fusion location
fixed, the data transfer can take place through wired networks. But during wartime
or for battlefield surveillance, all the sensors may be fixed or mobile and the fusion
bed (consists of fusion processors, which in most cases is an Airborne Warning and
Control System (AWACS) that performs the fusion operation) is also mobile. Thus
the network has to rely on wireless transfer of information. Since there exists no
fixed infrastructure or predetermined connectivity between sensors and the AWACS,
the network could be considered as a wireless ad hoc network. Ad hoc networks are
described in detail in Section 1.4.

In this work, we are basically interested in the logistics of fusion process: How
the data transfer for the fusion process will be carried out? And where will the

fusion take place? Our work is to facilitate the fusion process by providing a robust



architecture for performing fusion. The decision variables are the locations of the
fusion processors, such as AWACS surveillance aircrafts etc. (We will address them
as Cluster Heads.) In a situation like this, we know that all the entities or sources of
data (radars, sonars, soldiers, etc.) are mobile and hence we need an equally flexible
architecture in order to collect data from all these sources. The position or location
of all the entities is assumed to be known at all times.

The obvious medium of data transfer is a wireless communication network. Wire-
less communication is characterized by transmission range, available bandwidth, etc.
Since the sensors are mobile they may move out of each others range or the bandwidth
restrictions might disrupt or disconnect the communication link between them. In
addition to this a communication link is also prone to enemy attack. Hence a commu-
nication link has an associated probability of jamming, failure, or there might exist
a foliage/terrain effect. The challenge here is to ensure that no data is lost and it
becomes absolutely necessary to “multiply cover” the sensors.

Typically sources of information such as radars, soldiers, etc. lie on the ground,
or are under water in the case of sonars. The facilities with processing power such as
AWACS or surveillance aircrafts are at a higher altitude. AWACS also act as sources
of information.

The objective of this work is to develop an optimal strategy and solution for
locating a given number of AWACS (Cluster Head) such that maximum information
can be gathered and processed from the sensors under hostile conditions.

Given the above motivation, we model the problem under consideration as a cov-
ering problem due to its inherent structure, which maximizes the expected demand
covered with a given number of cluster heads. A distinctive characteristic of this prob-
lem is that all the entities are mobile. Additionally the links between the facilities
(Cluster heads) and “demand” nodes (sensors) are prone to failure. We incorporate
these features in our model and hence this work can be viewed as a variant of the

work of Daskin [29] due to the following reasons:

1. Daskin considers facility failure as opposed to link failure.
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2. Daskin considers a static scenario as opposed to a dynamic scenario, i.e., the

demand nodes were considered to be stationary.

In the following section, a comprehensive review of the covering location problem,
wireless ad hoc networks and dynamic and stochastic models encountered in other

applications like plant layout and p-median problem is provided.

1.2 Literature review of Covering Models

Covering location problem is a genre of location problem based on the notion of
“coverage”. A node is said to be covered, if it lies within an acceptable distance of
at least one facility or it can be served within a prespecified time. The quality of
the service required or the criticality of the service governs the threshold distance (or
time). The covering location problem addressed in the literature are mainly based
on the following basic models: (1) Set Covering Location Problem (SCLP) and (2)
Maximal Covering Location Problem (MCLP). In SCLP, the objective is to cover all
demand with least number of facilities. Whereas in MCLP, the objective is to cover
maximum demand with a restricted number of facilities. In majority of the literature
both demand nodes and potential facility locations are a discrete set of points.

We can broadly classify the Covering literature into the following two categories:
1. Deterministic Covering Models

2. Stochastic Covering Models

1.2.1 Deterministic Covering Models

Covering models considering a deterministic scenario where all the input parameters
are known comprise this section.

The earliest work in the area of covering is dealt by Toregas et al. [62]. They
model the location of emergency service facilities as a set covering location problem

with equal costs in the objective function. Here the authors consider the maximum



distance or time that separates the demand node from its closest service facility as
a crucial parameter. Location of fire stations in a city is such an example. Other
examples are location of ordinary service facilities such as schools, libraries. The
objective is to locate minimum number of facilities such that the maximum response
time for attending any demand node is less than a specified threshold and every
demand node will be attended by at least one facility. The solution to this problem
indicates both, the number and the location of the facilities that provide the desired
service. In their paper, to achieve a better problem structure the authors assume
that the demand nodes and potential facility locations are finite points in a plane and
facilities can only be placed at demand node locations. The authors also assume that
the distance and minimum response time between every pair of points in the plane
are known. A standard linear programming code has been used to solve the problem
with the addition of cuts in case of fractional results.

Later in 1974, Church and Revelle [26] look at the covering model from a different
perspective where there is a restriction on the number of facilities to be located. The
objective of the model proposed is to cover maximum number of demand nodes with
limited resources (fixed number of facilities) such that the covered node is within the
desired service distance (S) of its closest facility. The authors designate the problem as
Maximal Covering Location Problem (MCLP). They also consider a small variant of
the MCLP by introducing the mandatory closeness constraint to additionally ensure
that no demand node is farther than a distance (7" > S) to its closest facility.
The lesser the difference between T and S, the fairer the solution is to the demands
not covered within S. In this paper the authors adopt linear programmming solution
techniques with Branch and Bound to get optimal integer solutions. Two heuristics
called Greedy Adding (GA) Algorithm and Greedy Adding with Substitution (GAS)
Algorithm are also employed. The GA first picks a facility which covers the maximum
demand, then picks the one which covers the most demand not covered by the previous
facilities and continues until all the facilities are located. This algorithm does not

guarantee an optimal solution, since once the facility is selected it cannot be replaced.



The GAS builds on GA with the only exception that GAS at each step tries to improve
the solution by replacing each facility, one at a time, with a facility at another free
site. If an improvement is possible, the pair of facility sites which provides the greatest
improvement in the objective function is chosen.

In order to overcome the uncertainity of a facility being operative at all times,
the concept of multiple coverage comes into the picture. One of the early works in
this area is cited in Hogan and Revelle in [35]. In this paper, the authors introduce
the concept of multiple coverage in the context of classic covering models: the set
covering location problem and the maximal covering location problem. The maximal
backup coverage problem is modeled as a multi objective formulation in this work.
The authors define backup coverage as the coverage of demand points by two or more
facilities and tradeoff the coverage as defined in SCLP and MCLP against backup
coverage. Two Models, viz. BACOP1 and BACOP2 have been described by the
authors. In BACOP1 first coverage in mandatory for all nodes, but the focus is on
first redundant coverage of a node. BACOP2 trades off first coverage against backup
coverage. Their main result is the fact that without substantial loss of first coverage,
significant levels of backup coverage within a system can be achieved.

Earlier work in covering literature assumed that the demand points are covered
if a single unit of service is available within the desired service distance or time of
its location. In the paper [11], Batta et al. reconsiders the SCLP and the MCLP
with multiple units required by the demand nodes. Their work can be viewed as a
generalization of the concept of backup coverage by Hogan and Revelle [35]. Here
the authors model separate formulations for SCLP and MCLP. Also an important
criterion considered in modeling was that the demand which requires greater number
of units to respond is more critical and hence the model requires the closest service
facility to be closer than the one which requires less units. The authors first transform
the problem into a 0-1 integer program and then apply implicit enumeration branch
and bound algorithm to solve the problem.

The MCLP has wide use in selecting locations for facilities, especially for problems



involving the public sector services, such as fire, police, ambulance and educational
services. An implicit assumption of the MCLP is that, the demand nodes not covered
by a facility are not served. This is an impractical assumption especially in emergency
service sectors. Church et al. [25] overcome this assumption and also consider the
distance traveled to cover these demand nodes in their formulation. The authors
formulate the problem as a two-objective location covering problem which directly
considers the travel distance that uncovered demand must traverse to reach its nearest
facility. A Lagrangian relaxation method was used to solve the problem.

Moon and Chaudhry in [46] introduce an additional aspect to the set covering
location problem of providing a secondary coverage to the facilities providing primary
coverage to the demand nodes. They term the problem as a conditional covering
problem (CCP). The CCP requires facilities to be located such that all demand nodes
are covered within an acceptable distance or time of the facility. Also any two facilities
are no farther away than a specified distance. The authors model the problem as an
Integer Program and solve the relaxed linear program with cut constraints. Later in
1987, Chaudhry et al. [22] proposed seven greedy heuristics for solving the CCP.

Revelle et al. in [56] extend the notion of CCP [46]. They introduce three models
in the paper: Maximal Conditional Covering Problem (MCCP I and MCCP II) and
Multiobjective Conditional Covering Problem (MOCCP). The objective of MCCP is
to locate a given number of facilities to maximize the facilities which are themselves
covered by another facility within a prespecified distance. In MCCP the supporting
coverage is not mandatory unlike in CCP, but the demand nodes do require primary
coverage. The MCCP 1 prevents the supporting facility to be located at the same
location, whereas MCCP II permits the supporting facility to be stationed at the
same node. The MOCCP relaxes the constraint that all nodes should have a primary
coverage. MOCCP is a two-objective problem which sees the tradeoff of primary
coverage to the demand nodes against the secondary coverage of the facilities. They
model both MCCP and MOCCP as a Linear Integer Program and solve the relaxed

LP using a Branch and Bound procedure.



Berman and Krass [14] relax the assumption made in traditional MCLP that
coverage of a demand node is binary (i.e., either fully covered or not covered at
all). The authors introduce a generalized version of MCLP (GMCLP) with partial
coverage of demand nodes. They assume that for each demand node, a multiple set
of coverage levels, with corresponding coverage radii are specified. They also assume
that the coverage level is a decreasing step function of the distance to the closest
demand node. The GMCLP is shown to be equivalent to the Uncapacitated Facility
Location Problem (UFLP). Several Integer Programming formulations are developed
by the authors capitalizing on the special structure of the GMCLP. Computational
results show that small instances of the problem are the toughest to solve. However
solvability improves with increase in the number of demand nodes.

Brotcorne et al. [18] develop five heuristics for a special case of large scale covering
location problems, where the set of demand point is discrete and the set of potential

locations for the facilities is continuous.

1.2.2 Stochastic Covering Models

Most of the location theory papers like the ones described above deal with determin-
istic conditions. Stochastic Covering Problems takes into account the uncertainity
of a facility working condition and models the covering problem such that a more
realistic and reliable system is developed.

Chapman and White [20] were the first to consider the unavailability of the fa-
cilities covering the region. They came up with the probabilistic version of SCLP.
The model ensure that the probability of a demand node being served by at least one
facility is greater than or equal to a specified reliability level a.

Later Daskin [29] introduced a variant of the MCLP that considers the possibility
that facilities may be unable to respond to demand at all times. In both SCLP and
MCLP, it was assumed that the facilities will be able to provide service to all the
demand nodes such that they are within the desired distance S. This paper relaxes

the above assumption and associates a probability of a facility being operative. In



MEXCLP (Maximum Expected Covering Location Problem), every demand node
will have potentially more than one facility to cover itself. In other words, not all
facilities will be able to respond to demands at all times, i.e., we need to consider the
probability of a region being covered. Here the author assumes that the probability p
of a facility working is independent of other facilities and p is same for all facilities. A
single node substitution heuristic algorithm was proposed for solving the MEXCLP.

Later in 1989 Batta et al. [10] relaxes three of the assumptions made in the
MEXCLP model viz. facilities operate independently, facilities have the same working
probabilities and the probabilities are invariant with respect to their locations. This
paper discusses three techniques of improving upon the solutions proposed by Daskin:
1) use the post-IP analysis procedure on Daskin’s result; 2) use the adjusted MEXCLP
(AMEXCLP) objective function in Daskin’ s Procedure; and 3) use the hypercube
optimization procedure.

The covering literature which considers the unavailability of certain facilities for
service due to facility failing or facility serving some other customer is termed as
Reliability Covering Problem (RCP). Ball et al. [5] consider the RCP in which the
given routes service various stops (e.g., in a transportation system). They address
reliability with respect to possible route failures in a covering context. The objective
of their work is to find the probability that all stops will be covered by an operating
route, given that the routes are subjected to failure. The authors show that the RCP
is N P-hard on both directed and undirected networks. Some polynomially solvable
cases are developed by the authors when some additional structure is imposed on the
routes of the tree.

Ball and Lin [4] models the emergency service vehicle location problem as a 0-1
integer programming formulation. The model explicitly captures the stochastic nature
of the problem by trying to optimize the reliability of the system, where the vehicle
will not be available to respond to all demand calls within the specified (acceptable)
time. The authors propose valid inequalities as a preprocessing technique to augment

the TP. A Branch and Bound procedure is used to solve the IP. The computational
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results show that the preprocessing techniques are highly effective.

Marianov and Revelle in [40] develop a queuing model for the probabilistic set
covering location problem considering the unavailability of the facilities to respond to
demand (when they are serving some other customer) at certain times. The objective
of the model is to minimize the total number of facilities required to cover all demand
with a minimum reliability a. The paper explicitly considers the dependence of the
probabilities of facilities being busy, when the facilities are in the same region. For
each region the author models the behaviour as an M/M/s-loss queuing system ( a
Poisson arrival, exponentially distributed service time, s servers, loss system). They

solve the relaxed LP using a branch and bound procedure.

Marianov and Serra [41] model the probabilistic MCLP with a restriction on the
maximum waiting time for any demand or the maximum queue length. In the paper,

two models are presented:

1. Queuing Maximal Covering Location-Allocation Model (QM-CLAM): The ob-
jective is to locate p centers to maximize the demand node covered, where each
covered node is within a prespecified distance (or time) and no demand from
the covered node

(a) has to wait more than the maximum waiting time 7, or
(b) is accompanied by more than b demand in the queue,

with a probability of at least a. Here the number of facilities per center is

restricted to one.

2. QM-CLAM with co-location of m servers per center: Here each center consists

of m servers.

They model the problem as a 0-1 integer program and heuristic solutions are also

presented.

11



Melachrinoudis and Helander in [42] considers the problem of locating a single
facility on an undirected tree with n nodes in the presence of unreliable edges. The
edges fail with a probability of (1 — p.). The authors assume that the probability
of failure of the edges are independent of each other and the nodes are perfectly
reliable. The objective of this work is to find a network location that maximizes the
expected number of nodes reachable by operational paths from a given service facility.
A decomposition formula is developed by the authors. They show that for a linear
graph with equal edge probabilities, the median node will be the optimal facility
location. The authors also present two polynomial time algorithms for this problem.
The first algorithm is a label correcting procedure, based on modification to the
Floyd-Warshall all pairs shortest path algorithm. It has a running time of O(n?®). The
second algorithm is of O(n?) that is based on a depth-first node traversal and takes
advantage of the tree structure. The polynomial algorithms are possible because of
the uniqueness of paths in trees and also because the problem is restricted to locating
a single facility. They also provide sensitivity analysis ranges and analytically derive
marginal values for p.. The authors conclude that for multiple facility locations in a
cyclic network the problem becomes very complex.

A detailed review on covering literature can be found in [48, 59, 65].

1.3 Literature Review of Dynamic Models

In this review, we will cite some of the work conducted in other location siting prob-
lems, where dynamic or stochastic aspects are considered to incorporate the real world
scenario. Dynamic models incorporate the deterministic changes that are going to
occur over a period of time. Whereas stochastic models capture the uncertainity
involved in one or more parameters on which the models depend. Here a detailed
review of some of the dynamic and stochastic models in the following areas is carried

out.

1. The Dynamic Plant Layout Problem and
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2. The Stochastic P-Median Problem

1.3.1 Dynamic Plant Layout Problem

Before introducing the dynamic plant layout problem, let us explain the static plant
layout problem.

The Static Plant Layout Problem (SPLP) considers that the material flow among
given entities is same for all periods and attempts to minimize the total material
handling cost by assigning a given number of facilities to a set of locations. The
SPLP is often formulated as a Quadratic Assignment Problem.

The SPLP has been formulated in Rosenblatt [57] as follows:

n n n n
Minimize z;, = Z Z Z Z ;551 X35 X

i=1j=1k=11=1

Subject to
YoXy =1 j=1,---,n, (1.1)
=1
X, =1 i=1,---,n, (1.2)
j=1
Xij € {Oa 1} Vi, 4, (13)
where
1 if department i is assigned to location j
0 otherwise
Qo f,’kd]’l le#kOI‘j?él
kil fz’idjj + Cij if i = k and j =1
Cij = cost per unit time associated directly with assigning department 2
to location 7,
djj = distance from location j to location ! (travel cost between locations);
where d;; = 0, and
fie = work flow from department i to department k.

Constraint (1.1) ensures that only one department is assigned to location j. Con-
straint (1.2) ensures that the facility is assigned to only one location. Rosenblatt [57]

introduced the Dynamic Plant Layout Problem (DPLP), where the material flow is
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different for each period. The author considered a deterministic environment where
the material flow is known for each period of time. Given that the locations of facil-
ities is allowed to change, the DPLP model considers tradeoff between the material
handling cost and the relocation cost. A dynamic programming formulation is devel-
oped to determine the optimal layout for each period of the time horizon.

Let Z, \, be the material handling costs for layout Ay, in time period ¢. Here the author
finds the best R, solutions for each time period ¢ such that K = ZUVB — Zi*f and R,
is given by Z, g, — Ziy < K and Z; g, 11 — Zi1 > K where ZYP is upper bound and
7™ is the lower bound determined by summing the costs obtained by solving the
SPLP in each period without considering rearrangement cost. The paper discusses

techniques to determine simple upper bounds by:
1. Keeping the same solution throughout the time horizon, or

2. Determining the solution obtained by finding the optimal layout for each time
period using SPLP and adding the cost of rearrangement from one layout to

another.

The author finds the best R, solutions by introducing an additional constraint (1.4)
to the previous best solution.
(l,])GAk (Zvj)eBk

where Ay = {(i,7) : Xi; = 1} and By, = {(4,5) : X;; = 0}

Constraint (1.4) forces the new layout to differ from the previous layout by at
least changing the assignment of two facilities.

Zy 9 is found by adding constraint (1.4) to the SPLP formulation with solution set
of Z;1, Z, 3 is found by adding constraint (1.4) to the SPLP formulation with solution
set of Z; 2 and so on.

Each time period ‘¢’ forms a ‘stage’ having R, states, each state corresponding to a
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different layout. Both optimal and heuristic solution procedures are discussed using
dynamic programming. The issue of rolling horizon is also addressed.

Batta [9] establishes a class of best possible upper bounds for the DPLP described
in [57]. The author shows that if the same layout is used for all periods, then the
problem reduces to solving a single SPLP where the flows between any two facilities
for each periods are added up to obtain the resultant (corresponding) flow.

Balakrishnan et al. [3] considers the dynamic plant layout problem (DPLP) with
the additional constraint on the total budget for shifting facilities. The authors
term the problem as Constrained Dynamic Plant Layout Problem (CDPLP). They
formulate this problem as a Quadratic Assignment Problem similar to the SPLP. Also
the authors model the CDPLP as a single Constrained Shortest Path Problem (CSP)
and compare the CSP algorithm with the Dynamic Programming (DP) approach used
in previous works in this area. The results in the paper shows that in most cases the
CSP algorithm performs better than the DP algorithm.

Montreuil and Laforge in [45] incorporate the probabilistic nature of the future
requirements in the Dynamic Layout Design model. The model requires the user to
input the scenario tree of the probable future. For each future, the designer has to
specify the shape requirements of the cells, the material flow between the cells and
the cost of relocating the facilities from the current future to the probable future.
The authors formulate the problem as a linear program.

Kouvelis et al. [39] aims at developing robust layouts for single and multiple period
layout planning. The authors propose algorithms for generating robust layout designs
for both single and multiple periods taking uncertainity in product mix as well as
production volumes into consideration. For solving the single period layout problem
a simple modification to the branch and bound procedure is suggested, whereas for
large multi-period dynamic layout design problem, a heuristic approach is proposed.

Palekar et al. [49] deals with the dynamic plant layout problem (DPLP) by
explicitly capturing the stochastic nature of the demand in the future periods. They

model the Stochastic Dynamic Plant Layout Problem (SDPLP) where the Inter-
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departmental Flow Matrix (IDFM) at any time depends on the previous states. The
model minimizes the expected material handling cost and the relocation cost of the
facilities for the time horizon. The authors also propose an exact and heuristic solution
procedure for solving the SDPLP.

In [27], Conway and Venkataramanan extend the work of Rosenblatt [57] and
Balakrishnan [3] by introducing the budget constraint for each period in the multi-
period dynamic plant layout problem. The authors propose a genetic algorithm based
solution technique for the multi-constrained DPLP.

Yang and Peters [66] model the DPLP considering a rolling horizon planning time
window to obtain a robust layout design in a flexible manufacturing system. An
efficient heuristic solution procedure is also proposed.

Kochhar and Heragu [38] provide a genetic algorithm based heuristic for the dy-
namic plant layout problem for two consectutive planning periods. The algorithm,
Dynamic Heuristically Operated Placement Evolution (DHOPE) attempts to find the
layout for the next period, given the current layout with the objective of minimizing
the rearrangement cost and the total material handling cost.

Baykasoglu and Gindy [12] solves the DPLP problem using a simulated annealing

based procedure.

1.3.2 Stochastic P-Median Problem

In this section, some of the stochastic models applied to the classical p-median location
problem are explored.

The p-median problem is a class of location problems where the objective is to
locate p-facilities (medians) such that the sum of weighted distance (or travel time)
between demand nodes and the closest facility is minimized. The p-median problem
was introduced by Hakimi [33, 34]. Hakimi [34] proved an important property that
one of the optimal solution of the p-median problem consist of locating the facilities
only on the nodes of the network.

Mirchandani and Odoni [43] extended the p-median problem for networks where
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link traversal time are assumed to be a random variable with a known discrete proba-
bility distribution over a finite set of values including infinity representing link failure.
Since there is a finite number of identifiable potential sites for facility location, the au-
thors formulate the stochastic median location problem as an integer linear program.
They show the existence of an optimal solution under a reasonable set of assump-
tions: and thereby corroborates Hakimi’s [33] result. The authors further determine
that if the utility function for travel time is convex and non-increasing, at least one
set of expected optimal k-medians exists on the nodes of a network (oriented and
non-oriented).

Weaver and Church [64] formulate the stochastic p-median location problem as

follows:
Minimize Z Z Z Qkaikdijka:ijk
k=11i=1j=1
Subject to
injk = 1 V ’1:, k, (15)
j=1
Yy = b (1.6)
j=1
Tijk S Y; v Z.aja ka (17)
zije € {0,1} Vi, 4,k (1.8)
Yj € {07 1} v j7 (19)
where
a;rx = the demand at node 7 in state k ,
Qr = the probability of being in state k ,
s = the number of states of the network ,
n = the number of demand nodes ,
dijx = the distance (travel time) from node ¢ to node j in state & ,
1 if demand node i is assigned to a facility at node j
Tijk = in system state k
0 otherwise,
' _ 1 if there is a facility located at node j
Yi = 0 otherwise.

17



The objective of the above formulation is to maximize the sum of the expected
weighted distance from facility to the demand nodes. Constraint (1.5) ensures for a
given state, the demand node ¢ is assigned to only one facility. The restriction on the
number of facilities is given by constraint (1.6). Constraint (1.7) prevents demand
nodes to be assigned to locations where no facility is placed.

The authors [64] provide computational procedures for solving the stochastic p-
median problem. One of the solution procedure to generate an approximate solution
is a generalization of the exchange heuristic developed by Teitz and Bart [60]. The
exchange heuristic starts with an initial solution and exchanges a pair of nodes, one in
the current solution and the other not in the current solution, which yields maximum
improvement in the objective function value. This procedure is repeated until no
such pair of nodes is found which improves the objective function value (solution).
The authors also propose a bounding method based on Lagrangian relaxation with
subgradient optimization. In case the sub-gradient procedure fails to terminate with
an optimal solution for the primal, a branch and bound algorithm can be used with
Lagrangian relaxation for obtaining lower bounds instead of the LP relaxation.

Berman and Odoni [16] relaxed the assumption that the facilities have to be
located permanently at a given location and allowed the facilities to be relocated at a
cost with change in the network states. The authors presents a more realistic version
of the problem of locating facilities on a stochastic network where the travel time on
a link is a random variable and relocation of facilities is allowed on a network in a
reaction to the changes in the state of the network. Transition among the states of
the network are assumed to be Markovian. Some of the assumptions made in the

paper are:

1. Network is connected for all states and traversal time of all the links of the

network takes a finite value for all the states.

2. Time intervals between any change in the state of the network are much longer

than the service time on the network.
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3. All facilities are available for service whenever a demand occurs.

4. Same set of locations are chosen every time the network is in a particular state
s, independent of the previous states of the network. Later in the paper, the

authors provide a counter example to this assumption.

The authors show that for a case of locating a single facility on a tree, the problem
reduces to finding the median of the tree for any one state of the network. A heuristic
algorithm is proposed for finding the location of a facility on a general network. The
authors also develop simple bounds on the optimal value of the objective function for
the multifacility and multistate problem.

Later Berman and LeBlanc [15] developed a heuristic for solving the stochastic
p-median problem with relocation of facilities allowed with change in the state of
the network. The heuristic, which runs in polynomial time, determines the optimal
location of facilities for the multi-facility, multi-state problem. The authors compare
the heuristic with linear programming formulation of the problem for a series of small
test problems. For larger test problem, the solution provided by the heuristic is
compared to several bounds.

Later Berman and Rahnama [17] extend the work of Berman and Odoni [16] with
the only modification that the location of the p facilities depends on the previous
state unlike assumption 4 (mentioned previously) of [16]. The authors present an
algorithm where complexity is reduced by taking advantage of the special structure
of the problem.

Berman in [13] models the location of a single facility with the objective of mini-

mizing the expected response time with the following uncertainty involved:

1. Travel times on the links of the network are discrete random variables with a

known probability distribution.
2. Demands occurring in the network follow a homogeneous Poisson process.

In the paper, two models have been developed: 1) Stochastic Expected Loss Median
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problem (SELM) and 2) Stochastic Expected Queue Median problem (SEQM). In
SELM, the demands that arrive when the server is busy are lost at a positive cost.
Whereas in SEQM, the demands that occur when the server is busy are queued and
are served on an FCF'S basis.

Carson and Batta [19] show for a case of locating an ambulance in a University
that a significant amount of savings is achievable, when relocation of ambulances
is allowed based on the temporal variation of demand. The performance measure
adopted is to minimize the system-wide average response time to a call.

Vairaktarakis and Kouvelis [63] model the 1-median location problem on a tree
network considering the dynamic aspects and /or uncertainty involved in the demands
of the node and the length of the links’. The node demand and links length are either
dynamic, i.e., a linear function of time or uncertain given by a finite number of
scenarios. Several models have been presented by taking various combinations of: 1)
Linear demand, 2) Stochastic demand with a) Linear link length or b) Stochastic link
length. The authors model all the problems with the objective of minimax regret
criteria (minimizing the maximum loss). Polynomial time algorithms for each case
are also presented.

Averbakh and Berman [2] consider the 1-median problem with the uncertainty
involved in the weights (demand) of the nodes of the network. The weight of each
node is a random variable with an unknown probability distribution. An interval is
known in which the weight of each node lies. The objective of the minmax regret
model presented is to develop a solution which minimizes the worst case loss in the
objective function for such a scenario. The paper also shows that the minmax regret
model is polynomially solvable.

Current et al. [28] approaches the dynamic facility location problem with un-
certainty involved in the total number of facilities to be located. In the paper, two
different objectives are considered for modeling the p-median problem with NOFUN
(Number Of Facilities Uncertain). They are: 1) Minimization of expected opportunity

loss (EOL), and 2)Minimax regret, i.e., minimize the maximum loss.
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The authors model the EOL problem as a 0-1 integer programming problem. The
minimax regret criterion for the objective function value is also considered for the

case where the probabilities of the various states are not known.

1.4 Literature review on Wireless Ad hoc Net-
works

In recent years, Ad hoc networking has gained enormous importance in the field of
mobile computing. An ad hoc network is a self-organizing multi-hop wireless network,
which relies neither on fixed infrastructure nor on predetermined connectivity. All the
entities in an ad hoc network can be mobile. The communication between network
components is carried over a wireless medium and the network topology changes
depending on the node mobility. The main advantage of such networks are that they
can be rapidly deployed and therefore applications of these are in situations which
either lack fixed infrastructure or are at high risk; e.g. in military communications,
disaster management, law enforcement, etc.

The issues in ad hoc networks [58] can be classified as follows:
1. Network Topology
2. Location Management

3. Routing Management

1.4.1 Network Topology

In a highly dynamic environment of an ad hoc network, proper design of network
architecture is crucial to many related issues such as routing or location management.

Typically, the topology in an ad hoc network is either flat or hierarchical.

Hierarchical Architecture

In a hierarchical topology, nodes are partitioned into groups called clusters. Within

each cluster, a node is chosen to perform the function of a cluster head. Depending
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Figure 1.1: 3-tier Hierarchical Network Architecture

on the number of hierarchies, such networks can have one or more tier or level. Cluster
head is responsible for keeping track of locations (also called location management) in
its cluster. Also, routing between two nodes in different clusters are always through
their respective cluster heads. A cluster head, on getting the message from the source
node, passes it to a node in the higher level, which, in turn, sends it to its cluster head
(if the message need to go upward) or to a neighboring node in the same cluster (if
the message remains in the same level or go downward). Ramanathan and Steenstrup
[65] presents Multimedia support for Mobile Wireless Networks (MMWN) based on
hierarchical structure. MMWN is a modular system of distributed, autonomously
adaptive algorithms that cooperate to support distributed, real-time multimedia ap-
plications in large, multihop mobile wireless networks. A typical hierarchical network
is shown in Fig. 1.1.

The paper discusses the various processes involved in the MMWN such as cell
formation, hierarchical clustering and cluster dynamics. A detailed review of the

existing clustering algorithms is presented in Section 1.4.4
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Figure 1.2: Flat Network Architecture

Flat Architecture

In a flat architecture, all the nodes are equal and each of them act as a router.
Connections are established between nodes which are in close proximity and routing
is constrained only by connectivity conditions and possibly by security limitations.
Fig. 1.2 shows a diagram of a flat network.

Haas and Tabrizi [32] presents an comparison between hierarchical and flat net-

works. The authors favores the flat architecture because of the following advantages:

1. In a flat network, the routing is optimal, and often more reliable since usually
more than one path exist between source and destination nodes. In hierarchical
networks, however, cluster heads are single points of failure and therefore these

routes are more susceptible to attack.

2. Nodes in flat network transmit at a significantly lower power than the trans-
mission power of cluster heads in hierarchical networks. This results in more
network capacity, less expense in power and larger degree of Low Probability

of Interception/Low Probability of Detection.

3. Also, in a flat network, no overhead is associated in dynamic addressing, cluster

creation and maintenance and mobile location management.

On the other hand, flat networks are not scalable. Mobility management is sim-
pler in a hierarchical network since the cluster head keeps the database containing

locations of all nodes in its cluster.
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1.4.2 Mobility or Location Management

Mobility or location management deals with keeping track of locations of all the mobile
nodes within the network. To maintain current locations of each node in a network,
it is necessary to maintain a large database with periodic or continuous updating.
Location Management can be classified on the basis of this update into Static and
Dynamic strategies. In static strategies, the location is updated at predetermined
set of locations, whereas in dynamic strategies, the nodes (end-users) determine when
an update should be generated based on its movement. Kasera and Ramanathan
[37] considers the location management problem in a hierarchically organized multi-
hop wireless network where all nodes (switches and end-users) are mobile. Cluster
heads work as location managers for each cluster to maintain the association database
and perform other functions. Their location management mainly deals with location
updating, location finding and switch mobility. Location updates occur when one of

the following events happen [37, 55]:
1. End-user reaffiliates to some other switch
2. The switch to which the end-user is affiliated moves to some other cluster
3. Cluster reformation such as cluster splitting or merging.

In a flat network, however, location management seems difficult since there is
nothing which is equivalent to cluster heads. However, in [32], Haas and Tabrizi have

made a case for flat networks with zone routing as described in the next section.

1.4.3 Routing Management

In ad hoc networks the routing has to be determined dynamically and the literature for
routing protocols is divided into Proactive or Table Driven Routing Protocol,
Reactive or On-Demand Routing Protocol and Hybrid Protocol, the last

being a combination of the first two.
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Proactive protocol

In a proactive protocol, the route between each pair of nodes is continuously main-
tained in a tabular format. This table is updated on a continuous basis, recording
the changes in the network topology. Thus the delay in determining the route is
minimal, but maintaining the table is a costly affair which is wasteful for both time

and bandwidth. Some of the protocols cited in the literature are:
1. Destination-sequenced Distance-Vector Routing (DSDV) [53]
2. Clusterhead Gateway Switch Routing (CSGR) [24]
3. Wireless Routing Protocol (WRP) [47]

Reactive protocol

In a reactive protocol, routes are determined on a need to basis. That is, when a
packet is to be delivered from source node to the destination node, a route discovery
procedure is initiated and a route is determined through a global search procedure.
This would result in large delays and are therefore unacceptable in applications where
long routing delays cannot be allowed. Some of the protocols cited in the literature

are:
1. Ad Hoc On-Demand Distance Vector Routing (AODV) [54]
2. Dynamic Source Routing (DSR) [36]
3. Associativity Based Routing (ABR) [61]
4. Temporally Ordered Routing Algorithm (TORA) [52]

Hybrid protocol

Hybrid protocols combines the advantages of both reactive and proactive protocols.
Haas [31] proposed Zone Routing Protocol (ZRP), a hybrid protocol based on the

notion of routing zone. In this protocol, each node pro-actively determines the routes
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between itself and nodes within its routing zone. Thus whenever a demand arises
with little effort the route can be determined among the node not in the routing

zone. Some of the advantages of ZRP are:

1. It requires only a relatively small number of query messages, as these messages
are routed only to peripheral nodes, omitting all other nodes within the routing

zones.

2. As the zone radius is significantly smaller than the network radius, the cost of
updating the routing information for the zone topologies is small compared to

a global proactive mechanism.

3. ZRP is much faster than a global reactive route discovery mechanism, as the

number of nodes queried is very small compared to the global flooding process.
4. Tt discovers multiple routes to the destination.

5. The path determined by ZRP needs less number of hops and therefore is more
stable.

1.4.4 Clustering Algorithms

Clustering of nodes in ad hoc networks are done in order to use the wireless resources
efficiently by reducing congestion and for proper location and routing management.
Various algorithms has been proposed in the literature for clustering in ad hoc net-

works. Most common features considered by the clustering algorithms are:

1. Stability: The node mobility should not cause frequent changes in clusterhead

assignment and clusterhead should be comparatively less mobile.

2. Load Balancing: The cluster should neither be densely populated nor scarcely

populated.

3. Battery Power: Cluster head consumes more power than other nodes. Thus the

solution should not cause excessive drainage of some nodes than others.
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4. Transmission Range and Signal Strength: Clusterhead should have sufficient

transmission range and signal power to reach all the nodes in its cluster.

The clustering algorithms can be broadly classified as Graph based and Geograph-
ical based clustering. Graph based heuristics view the network as a graph. Whereas
Geographical based heuristics uses Global Positioning System (GPS) to accurately
determine the location and velocity of the nodes in the network. In general, the mes-
sage cost of maintaining a cluster is better for graph-based clustering, whereas the
number of nodes without a clusterhead is smaller for geographical clustering. Graphi-
cal clustering, however, is more suitable when nodes have widely varying transmission

ranges.

Graph based Clustering

Since the clusterhead selection is an NP-hard problem [7], all existing solutions avail-

able are based on heuristic approaches.

e Highest Degree Heuristic: Degree of a node is defined as the number of
nodes within its transmission range. The degree based heuristic is a modified
version of [51]. The node with highest degree is selected as clusterhead and
with all the nodes within its transmission range forms the cluster. The process
continues until all nodes are assigned to a clusterhead. Load balancing is poor

but the stability of the cluster is good.

e Lowest ID Heuristic: Each node has an unique identifier. In this heuristic,
the node with lowest id is selected as clusterhead [30] and all nodes within its
transmission range forms the cluster. The process continues until all nodes has
a designated clusterhead. Performance is better than highest-degree heuristic

[24]. Excessive drainage of lower id nodes is found.

e Node Weight Heursitic: In this heuristic Basagni [6] assigns a weight of -v

to a node with a speed of v units. The selection criteria is same as the highest
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degree heuristic. A stable solution is obtained, i.e. number of clusterhead

reassignment is small. No other features are captured in the heuristic.

Weight Based Clustering Algorithm: Chatterjee et al. [21] propose a
weight-based clustering algorithm where the weight of each node is updated
periodically. Here the authors assigns weight to each of the feature such as
Load balancing, Battery Power, Signal Strength and Mobility. The solution
obtained from this algorithm has less reassignment of clusterheads and flexibility

of changing weight to give more weightage to certain features than others.

MOBIC Clustering Algorithm: Basu et. al. [8] propose a distributed clus-
tering algorithm called MOBIC for mobile ad hoc networks (MANET). This is
based on relative mobility metric for clusterhead selection. All nodes send a
“Hello” message to all its neighbors and each of the node finds it relative mobil-
ity metric by a formula using the signal strength of the received message. Each
node shares its mobility metric with other nodes in its transmission range and
the node with least mobility metric assumes the position of clusterhead. The
results in the paper shows that the algorithm has 33% lower rate of clusterhead

change.

Geographical based Clustering

This algorithm uses GPS (Global Positioning Systems) to find the latitude, longitude

and velocity of the nodes and uses these information to form clusters based on the

spatial density. The clusters look like rectangular boxes (defined by grids) unlike

traditional clustering. The clusterhead is elected among the centrally located mem-

bers of each cluster. The cluster reformation is inevitable (necessary) due to node

mobility.

The clustering algorithm works using a 2-stage process [23], where the first stage,

Central Periodic Clustering Algorithm is a periodic procedure to form clusters

based on spatial density for the entire network. This stage is carried out by a central

28



global manager. This stage is divided into
1. Box Generation: Divides the region into small boxes.

2. Box Size Refinement: Checks the size of box and restrict the ratio of length to
breadth of the boxes to 1.5.

3. Node Density Adjustment: Removes boxes with no nodes in it and merges boxes

with less nodes and splits boxes with high node density.

The second stage, Cluster Maintenance is a maintenance algorithm executed lo-
cally within each cluster between two executions of the periodic protocol. The out-
comes of the algorithm includes changes in cluster membership, clusterhead respon-

sibility, merging and splitting based on spatial density, etc.

1.5 Thesis Objective

The focus of the thesis is to design a flexible network architecture that can reorganize
itself to capture the dynamics of sensor (demand node) movement for efficient data

fusion. The objectives of the thesis is:

1. To propose a mathematical model for finding the optimal location strategies for

the clusterheads over the entire time horizon.

2. To capture the mobility of sensors and the reliability issues (probability of link

failure) using a Mixed Integer Linear Programming (MILP) model.

3. To develop solution methods that can perform well in terms of both solution

quality and time.

1.6 Thesis Organization

Chapter 2 is comprised of detailed description of the problem followed by a Mixed

Integer Linear Program (MILP) formulation. Several variants of the model have
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been developed to capture varying characteristics of the system. In Chapter 3, two
heuristics are presented. Also a Dynamic Programming based approach is explored.
A Column Generation approach is developed to solve the Dynamic MEXCLP in
Chapter 4. In Chapter 5 the software implementation for the solution methodology
is discussed and the results are presented. Conclusion and directions for future work

is discussed in Chapter 6.
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Chapter 2

Problem Description

2.1 Introduction

At the very outset, let us describe a battlefield scenario which forms the basis of
this work. In a battlefield the entities on the ground are radars, soldiers, tanks, etc.
Entities under water include sonars installed on ships, submarines etc. which are
used by them to locate targets. Unmanned Aerial Vehicles (UAVs) are examples of
airborne entities that are used for the purpose of surveillance. All these entities are
sources of information that could be of crucial importance in a wartime scenario.

These entities are represented as black dots located on the lower plane in Fig 2.1.

Figure 2.1: Typical Scenario

Let us define these entities as sensors for future reference. The information gener-

ated by all these sensors is useful to recognize the threats to the system and to aid in
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the purpose of gathering military intelligence. The gathering of information from the
sensors is achieved by the process of Data Fusion. Typically there are two strategies

that are used for data fusion:
1. Centralized data fusion
2. Decentralized data fusion

In Centralized data fusion, data from all the sensors are fused at a single proces-
sor and then the information is shared by all the entities of the system. Whereas, in
decentralized data fusion, data from a group of sensors called a cluster are processed
together at one Fusion Processor Airborne Warning and Control System (AWACS)
called clusterhead and the fused data (information) is transmitted to other cluster-
heads. It should be noted here that the sensors are not necessarily in close proximity
of one another. Hence a pertinent question is: where should the data fusion take
place? This question serves as the motivation of this work. Also in a battlefield
scenario the sensors could be possibly mobile. An implication of this fact is that the
data communication takes place through wireless rather than wired networks. This
gives rise to additional challenges like network reliability in the system.

The fusion is typically carried out by Airborne Warning and Control System
(AWACS). AWACS are typically aircrafts that possess fusion processors to carry out
the data fusion process. These AWACS are represented by the black dots on the
higher plane in Fig. 2.1. It should be noted that though the sensors and AWACS are
located on the lower and upper plane respectively in Fig. 2.1, this is not necessary.
It is just for the purpose of visualization of the problem scenario.

The objective of the work is to locate these AWACS such that maximum data
is gathered from the sensors. In this work it has been assumed that the AWACS
are located at discrete points. Each AWACS covers a set of sensors depending on its
location and transmission range. The sensors covered by an AWACS can be considered

to form a cluster with the AWACS as its clusterhead. Henceforth we use the term

clusterhead (CH) or facility instead of AWACS.
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The data transfer takes place through wireless medium of communication. Typical
issues related to wireless communication are transmission range, available bandwidth,
etc. Since the sensors are mobile they may move out of the facilities’ (CH) range
or the bandwidth restrictions might disrupt or disconnect the communication link
between them. In addition to this, a communication link is prone to enemy attack.
Hence a communication link has an associated probability of jamming, failure, or
there might exist a foilage effect. Thus it is extremely desirable that each sensor
should have multiple coverage, i.e. each sensor should be covered by more than one
clusterhead. This ensures maximum network reliability in the event of breakdown of
the communication link between a sensor and its clusterhead due to hostile jamming,
weather conditions, etc. In case of a catastrophic failure of a communication link, the
sensors could retain the capability to switch to a backup clusterhead.

The basic objective of the work is to locate AWACS such that the maximum data
is collected from the sensors. Additionally all the sensors are capable of moving and
they can change their position with time in order to perform the task assigned to
them. Since the sensors are mobile, relocation of AWACS is necessary to achieve
maximum coverage of sensors data. However to ensure a stable location strategy over
the entire “time horizon”, we either restrict the maximum number of relocations for
the entire time horizon or associate a cost for every relocation of AWACS (termed as
relocation cost). Thus we consider a tradeoff between data coverage and relocation
cost. Our objective is to achieve this tradeoff over a fixed time period, addressed
previously as time horizon. The time horizon is split up into discrete time periods of
equal length. Relocation of AWACS is permitted only at the beginning of these time
periods.

In order to achieve the tradeoff between coverage and relocation cost over the
entire time horizon and to ensure network reliability, we model the problem as a
covering location problem with the objective of maximizing the expected demand
covered by locating a given number of facilities (CH).

In later sections, we formulate our problem as an integer program, since our prob-
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lem structure closely resembles the Maximum Expected Covering Location Problem
(MEXCLP) addressed widely in the OR literature. Our work evolves from the tra-
ditional MEXCLP model. In the following section, we present a detailed description
and analysis of the MEXCLP.

2.2 MEXCLP

The traditional Maximal Covering Location Problem (MCLP) assumed that the fa-
cilities are perfectly reliable and are able to serve demands at all times. But this
assumption is not practical. Daskin [29] modeled the Maximum Expected Covering
Location Problem (MEXCLP) considering the unavailability of servers to serve all
demands at all times. In MEXCLP, Daskin associates each facility with a probability
p of being inoperative. The model assumes that the probabilities of the facilities not
working are independent of each other and are same for all facilities.

The objective of MEXCLP is to maximize the expected demand covered by locat-
ing a given number of facilities. In MEXCLP the number of facilities working follows

a binomial distribution and the probability of a node k being covered is given by
= 1 - Prob(node k not being covered)
= 1 - Prob(m facilities are not working)

where m is the number of facilities covering node k.

Let Hy,, be the random variable denoting the number of demands at node &
covered by a working facility, given that m facilities are capable of covering node k.

Hence we have:
I _ dj, with probability 1 — p™
ym N 0 with probability p™,

and E(Hgm) = de(1—p™) V  k,m.
If the number of facilities covering node k increases from m — 1 to m, the corre-

sponding increase in the expected coverage of node k is given by
= dp™'(1—-p) V m=12,...n

We now define the variables and their corresponding indices, utilized in the MEX-
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CLP formulation of [29], as follows:

1 = index for potential facility locations, 1=1,..., N,
k = index for demand nodes, k=1,...,N,
N = number of demand nodes,
n = number of facilities to be located,
D = the distance beyond which a demand node is considered
“uncovered”,
D;, = distance between potential facility location 7 and demand
node k,
dr = demand of node k,
D = probability of a facility failure (0 < p < 1),
. o 1, if Dy < D
ik = 0 otherwise.
The decision variables of the problem are:
x; = number of facilities placed at location ¢,
o 1, if demand node k is covered by at least j facilities
Yik = 0 otherwise.
The MEXCLP [29] is formulated as follows:
N n
Maximize Y > (1 —p)p’ 'dyi
k=1j=1
subject to
n N
Sy = rar; < 0V k=1,...,N,
j=1 i=1
N
Z T; S n,
i=1
r, € Z*t V i=1,...,N,
Yik € {0,1} V j=1,...,n,k=1,...,N.

(2.4)

The objective function maximizes the total expected coverage. The inner sum-

mation in the objective function represents the number of demands that are covered

by at least j facilities in which the term (1 — p)p’~! represents the weight associated

with the number of demands covered by at least j facilities for any demand node k.
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The objective function is concave in j for each k. If node k is covered by m facilities,
constraint (2.1) assigns each of the variables yix, Yok, - - - , Ymr @ value of 1 since the
objective function is a maximization function containing the term y;;. Constraint
(2.2) restricts the maximum number of facilities to be located. Constraint (2.3) is
an integer constraint for the number of facilities allowed to be located at location %.

Constraint (2.4) is a binary constraint.

2.3 Problem Description and Formulation

We consider the MEXCLP from the viewpoint of communication networks. In com-
munication networks, facilities and the links between facilities and the demand nodes
are prone to failure. However in this work, we assume that the facilities are perfectly
reliable. Hence we consider the coverage problem with a probability of link failure.
Alike traditional MCLP, MEXCLP also assumes that the demand nodes are static
and the locations of all demand nodes are known. Here we allow the demand nodes
to be mobile and assume that the velocity vector of all demand nodes is known and
hence we have a priori knowledge about the exact location of demand nodes at any
given time. From this aspect our work can be viewed as a dynamic variant of the
MEXCLP model proposed by Daskin. The motivation for this assumption arises due
to situations encountered in a military scenario as described in Sections 1.1 and 2.1.

A thorough analysis revealed that under a given set of assumptions, the objective
function structure for link failure is similar to the objective function structure of the
MEXCLP model where facility failure is considered. Here follows an argument to
support the claim.

Let us assume that a facility and a demand node are connected by at most a single
link. Let p be the probability of failure of a link. We assume that the probabilities of
link failure are independent of each other and are same for every link. The expected
demand coverage of a node k, given that there exists m links is given by dx(1 — p™).

Further if we consider the facility failure probability ¢, given m facilities that cover
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demand node k, the expected demand coverage is di(1 — ¢™). Thus we observe that
the structure of the objective function is similar under the assumption that all failure
probailities (link or facility) are independent of each other and same for all links (or
facilities).

We propose several models incorporating the dynamic nature into the MEXCLP.
We term this model as the dynamic MEXCLP. The basic objective of the model is to
maximize the expected demand covered by locating a given number of facilities over
a specific time horizon allowing relocation of facilities from one time period to next
and minimizing relocation costs.

The following assumptions are made in our model:
1. Location of the sensors are known at any given instance.
2. Potential clusterhead locations constitutes a set of discrete points.
3. Relocation of facilities takes place at discrete time periods.
4. The clusterheads are perfectly reliable.

5. The probability of failure of all links is the same.

2.3.1 Dynamic MEXCLP with Relocation

We note that the optimal location of facilities that maximizes the expected coverage
in one time period may not necessarily be optimal in the next time period. The relo-
cation of facilities increases the expected coverage that would otherwise be obtained
without considering relocation of facilities. Hence in this model we allow the facilities
to change location with time at an additional cost. Here a tradeoff between relocation
cost and the increase in coverage achieved by relocating the facilities is considered.

We now formulate the problem of determining the optimal locations of facilities with
relocation allowed at discrete time periods. Let us define the parameters and their

corresponding indices as follows:
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Figure 2.2: A snapshot of the network

= set of potential facility locations.
S = set of demand nodes.
n = maximum number of facilities to be located.

= maximum number of time periods in the horizon under consideration.

U = the distance beyond which a demand node is considered
“uncovered”.
D;,; = distance between potential facility location 7 and demand

node k at time ¢.

dy, = demand per period of node k.
P = probability of a link failure per period (between any facility and
demand node). (0 < p < 1)
. B 1, if Dy < U.
ikt 0 otherwise.
C = cost per unit change in the number of facilities at any location 2

(one-half of relocation cost).

The decision variables of the problem are:
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o = 1, if a facility is placed at location ¢ at time ¢
@ 0 otherwise.

- 1, if demand node k is covered by at least j facilities at time ¢
Yikt 0 otherwise.

wy = positive difference in the number of facilities at location
1 between time £ — 1 and time ¢
The dynamic MEXCLP with relocation is formulated as follows:

Maximize Z Z Z (1- ldky]kt Z Z Cwi,

t=0 k€O j=1 t=1icA
subject to:
Zyjkt—Zriktxit S 0 \ kzl,...,|®|,t:0,...,T, (25)
j=1 i€A
ozy < n V t=0,...,T, (2.6)
€A
Wit Z Tit—1 — Tt A izl,...,|A|,t:1,...,T, (27)
Wit Z Tit — Tijt—1 A izl,...,|A|,t:1,...,T, (28)
zy € {0,1} V i=1,...|ALt=0,...,T, (2.9)
wy > 0 V oi=1,...,|ALt=1,...,T, (2.10)
ymw < 1Y j=1,...,nk=1,...,|0,t=0,...,T. (2.11)

The objective function maximizes the expected demand covered allowing relocation
of facilities with time. If node k is covered by m facilities at time ¢, constraint (2.5)
assigns each of the variables y1x:, Yokt, - - - , Ymre @ value of 1 since the objective function
is a maximization function containing the term y;z;. Constraint (2.6) restricts the
maximum number of facilities to be located to n for any time t. Constraints (2.7)
and (2.8) determine the positive difference between the number of facilities located
at location i between time ¢ — 1 and t. Constraint (2.9) is an binary constraint
determining whether a facility is located at location 7. Constraint (2.10) is a non-
negativity constraint. Constraint (2.11) restricts the variable y;i: to take a value
between 0 and 1. We now present the following observations:

Observation 1:
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In the formulation variables z;; are restricted to take only binary values. Constraints
(2.7) and (2.8) together represent w;; = |z; — x;_1|. Since zy and zy 1 are both
integers w;; assumes an integer value at optimality.

Observation 2:

In the formulation, variables x; assume only binary values. Hence the term Z Tikt Tit
is also an integer since r;; is a constant which takes a value of 0 or 1 ageﬁeﬁned

earlier. Thus we have:

Syt <D TiwTa V k=1,...,|0,t=0,...,T (2.12)
j=1 i€EA

or, Zy]kt S m \4 kzl,,|@|,t:0,,T (213)
j=1

where m is an integer for any particular k£ and ¢.

For a given value of x;;, the problem turns out to be

T n
Maximize Z Z Z a;dkYjkt,
t=0 ke® j=1
subject to:

oy < m V k=1,...,|0|,t=0,...,T (2.14)
j=1

where a; = (1—p)p™! V j=1,2,---,n.

For a particular values of k and ¢, the above problem is separable into knapsack
problems of the following form:

Maximize a1y1r: + a2Y2rt + a3Y3kt + QaYart + -+ + AnYnke

subject to

Yikt + Yokt + Yokt + Yakt T+ Ykt < M. (2.15)

Since 0 < p < 1 its obvious that a; > as > az > ag.......... > a, and hence at
optimality the first m variables (yixs, Yokt, - Ymre) Will assume the value of 1 and
the remaining n — m variables (Ym11kt, --, Ynke) are set to 0. Thus even though the
variables y;x; are continuous variables between 0 and 1, at optimality y;i; assumes

binary values.
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2.3.2 Dynamic MEXCLP with restriction on the maximum
number of relocations for the entire time horizon

In this variant of the Dynamic MEXCLP, instead of having a relocation cost, we
consider a restriction on the maximum number of facility relocations allowed for the
entire time horizon. This is a practical assumption, since many applications may
require a stable solution which provides a good coverage for a longer period of time.
We now formulate the dynamic MEXCLP with restrictions on the maximum number

of relocations as follows:

T n
Maximize Y > Y (1-— )P’ iy

t=0 ke® j=1
subject to
Zyjkt - Zriktxit S 0 V k= 17 a|®|at =Y aTa (216)
j=1 1€EA
Zl’it S n v t:Oa aT’ (217)
1E€EA
Wit Z Lit—1 — T4t i izl,...,|A|,t:1,...,T, (218)
Wit = Tip — Tit—1 \4 Zzl,,|A|,t: ,...,T, (219)
T
S wn < 28, (2.20)
t=1:€A
ze € {0,1} VY i=1,...,|At=0,...,T, (2.21)
wy > 0 V i=1,...,|ALt=1,...,T, (2.22)
Yjkt S 1V ]:17 7n7k:17 7|®|7t: ) 7T' (223)

Constraint (2.20) restricts the maximum allowable number of relocations for the entire
time horizon to H, where

H = Total number of facilities allowed to relocate for the entire time horizon.
The factor 2 arises because each relocation causes a change in the number of facilities

at 2 different locations in consecutive time periods.
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2.3.3 Dynamic MEXCLP with location dependent relocation
cost

Here, we consider an even more realistic situation where the relocation cost varies
with the pair of locations between which the given facility changes its position. In
this model, we have different indices for each of the facilities and we exactly know
which facility is located at which location. Here we can have facilities of different
characteristics.

We now define some additional parameters used in this model, and their corresponding

indices are as follows:

i,m = index for potential facility locations. i,m=1,...,|Al
l = index for facility. l=1,...,n.
Ciim = cost of relocating facility ! from location 7 to location m. (Cy; = 0)

The decision variables of the problem are:
_ { 1 if facility [ is located at location ¢ at time ¢

it 0 otherwise.
o 1 if demand node k is covered by at least j facilities at time ¢
Yikt 0 otherwise.

Wiime 1s a continuous variable but it assumes only integer values (refer to Section

2.3.1) and is defined as follows:
{ 2 if facility [ is relocated from location 7 to location m at time ¢

wy; )
limt 1 otherwise.

The Dynamic MEXCLP with location dependent relocation cost is formulated as

follows:
T n T n
Maximize Z Z 2(1 — p)p’fldkyjkt — Z Z Z Z Clim(wlimt - 1)
t=0 ke® j=1 t=11=1icA meA
subject to
S yike— D> T < 0 V k=1,...,|0|,t=0,...,T, (2.24)
j=1 €A I=1
> @ < n vV t=0,...,T, (2.25)
€A 1=1
Sy = 1 V I=1,...,n,t=0,...,T, (2.26)
1EA
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szm <1 Vo i=1,...,|ALt=0,...,T, (2.27)
l:tt)h-mt > Tyy1+ T VO Li,mit=1,...,T, (2.28)
2 € {0,1} V 1it=0,... T, (2.29)
Wi > 1 Vo Limt=1,...,T, (2.30)
yiw < 1V j=1,...nk=1,..,6,t=0,..., 7T(2.31)

The objective function maximizes the expected demand covered, allowing relocation of
facilities with time, where the relocation cost depends on the pair of locations between
which a facility moves. If node k is covered by m facilities at time ¢, constraint (2.24)
assigns each of the variables y1xs, Yokt, - - - , Ymre @ value of 1 since the objective function
is a maximization function containing the term y,j,. Constraint (2.25) restricts the
maximum number of facilities to be located to n for any time ¢. Constraint (2.26)
restricts a facility to be located at only one location at any given period ¢. Constraint
(2.27) restricts the maximum number of facilities to be located at any particular
location to 1. If facility { is located at location ¢ at time ¢t — 1, x;;; ; = 1. Similarly if
facility [ is located at location m at time ¢, x;,,,; = 1. Based on the above, if facility
[ is relocated at time ¢ from location ¢ to location m, constraint (2.28) ensures that
Wiime > 2. The location dependent relocation cost is incurred only in this case, as
is evident from the second summation term in the objective function of this model.

Constraint (2.29) is a binary constraint.

2.3.4 Dynamic MEXCLP for Clustering with Mobile Facili-
ties

In this variant of the Dynamic MEXCLP, we relax the assumption that the potential
location of clusterheads (facilities) are different from the location of the sensors. In
this model, instead of locating facilities at potential locations, we elect sensors which
act as the clusterhead. Since the sensors are mobile, the elected clusterhead is itself

a sensor. Thus clusterheads are also mobile and follow the same trajectory as they
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followed when they were sensors.

s /® @  Occupied Facility Location
U ®\ (Clusterhead)
S é ) \@ ® Demand Node
/ e A —  Displacement Vector
.y ¥ s s
o0 N e LoLe

'\@ 77777 /O /O /@

& ®/ \@

P ‘s

Figure 2.3: A snapshot of the network

We now redefine some of the parameters as follows:

O = set of potential facility locations.
C] = set of demand nodes.
D;,; = distance between demand node ¢ and demand

node k at time t.
C = cost per change in the status from CH to sensor or viceversa

We also redefine the decision variables of the problem as follows:
o 1, if demand node ¢ acts as a clusterhead at time ¢
T = 0 otherwise.

B { 1, if demand node k is covered by atleast j facilities (CHs) at time ¢

Yskt 0 otherwise.
v — 1, if a demand node i changes its status from clusterhead to sensor or viceversa.
* 0 otherwise.

The dynamic MEXCLP for clusterlng with moblle facilities is formulated as follows:

Maximize Z Z Z (1- 1dky]kt Z Z Cwy

t=0 k€O j=1 t=14€0
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subject to

Zyjkt - Z'riktxit < 0 V k= 17 7|@|7t =Y 7T7 (232)
j=1 1€O
Zmit S n v t= 07 aTa (233)
€0
Wit 2 Tig—1 — Tit v 1= 17 ) |®|>t = 17 7T7 (234)
Wit > Tip — Tig—1 vV 1= 17 ) |®|7t =4 7T7 (235)
i, € {0,1} V i=1,...,]8,t=0,...,T, (2.36)
wy; > 0 V i=1,...,|0,t=1,...,T, (2.37)
Yjkt S 1V J = 17 . ,’I’L,k = 1a a|®|at = Oa 7T7 (238)

The formulation is similar to the one described in Section 2.3.1 with the only difference
that the set of potential facility location is same as that of the set of sensors. Also the
objective is to elect clusterheads among the sensors such that the expected demand
of the sensors covered by each clusterhead is maximized. This formulation can be
used as a clustering tool in ad hoc networks ensuring network reliability. Clustering
is done for efficient management of the network and also to ease location management

and routing.

2.4 Chapter Summary

In this chapter, we presented a detailed description of our problem scenario. We
studied the MEXCLP and its formulation by Daskin [29] in details. Then we model
the problem at hand as a variant of MEXCLP termed as Dynamic MEXCLP. This is
followed by an indepth study of the various variants of the Dynamic MEXCLP, along
with their respective problem formulations. We also establish that the structure of the
formulation remains unaltered if link failure is considered instead of facility failure.

In chapter 3, we present a solution methodology developed for our problem.
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Chapter 3

Solution Methodology: A Heuristic
Approach

In the previous chapter, several variants of the dynamic MEXCLP were presented.
The given models can be solved using a standard Mixed Integer Linear Programming
(MILP) solver like CPLEX. But with increasing problem size, it becomes more and
more difficult to solve the MILP using CPLEX. Large problems cannot be even read in
to the CPLEX environment and hence solving such problems is not possible in today’s
context. We know from the literature that covering location problems including
MEXCLP are NP — hard problems. Since Dynamic MEXCLP is a variant (or a time
extension) of the traditional MEXCLP, it is also an NP — hard problem. We know
that N P — hard problems are generally computationally intensive and tough to solve.
Thus we need an alternative approach to solve the Dynamic MEXCLP efficiently, in
order to determine the optimal facility locations. Since we are considering a military
scenario, developing a solution methodology with emphasis on solution time is of
crucial importance. However in a peacetime scenario, the quality of the solution
(objective function value) is more important compared to the solution time. Hence,
depending on the scenario, it would be necessary to consider a tradeoff between
solution time and solution quality. And it would be a desirable property of the same
solution method to operate under either situation.

In this chapter we develop two greedy heuristics for solving the Dynamic MEXCLP

and analyze their performances. They are:
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1. Relocation Heuristic (RH), and

2. No-Relocation Heuristic (NRH).

3.1 Relocation Heuristic

Relocation Heuristic (RH) is a greedy heuristic, which picks the best n locations, one
at a time, for each time period. The heuristic takes into consideration the link failure
probabilities as well as the relocation cost incurred in switching facilities locations in

two successive time periods. The detailed procedure of the RH is presented as follows:
1. Calculate the demand covered by each potential location.

2. Select the potential location with maximum coverage and place a facility at this
location. This potential location is now precluded from future placement of a

facility for this particular time period.

3. Since there exists a probability of failure of the link (p) between the facility
placed and the demand covered, a fraction of the demand is actually covered.
Thus we update the demand of the demand node covered by this facility by
multiplying it by p. We use the updated demand for future calculation of

coverage for only this time slot.
4. Repeat the above three steps until all the facilities are placed.

5. Repeat this procedure for all time slots. In order to take care of the relocation
cost, we add 2C (since a change in number of facility at two locations constitutes
a relocation of a facility) to the total coverage of the potential location for time

t, if that location was selected in the previous time period ¢ — 1.

The heuristic pretty much captures the link failure probabilities by updating the
demand of the sensor nodes after picking each location for placing a facility. The
heuristic also gives weightage equivalent to relocation cost to locations selected in

previous time periods in order to avoid too many relocations. RH is found to perform
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considerably well for most problem instances, as is evident from the results discussed
in detail in chapter 5.

One way of investigating how good the heuristic performs as far as solution quality
is concerned is to find how poorly the heuristic can perform. Thus we carry out a
worst case analysis for the heuristic. In order to evaluate the heuristic, we analyze
its worst case error bound for which we require the concept of an e-approximate al-
gorithm. This is formally defined as follows in Papadimitriou and Steiglitz [50]:
Let A be an optimization (minimization or mazimization) problem with positive in-
tegral cost function c, and let B be an algorithm which, given an instance I of A,
returns a feasible solution fz(I); denote the optimal solution of I by f(I). Then B is

called an e-approzximate algorithm for A for some € > 0 if and only if

|C(fB(cI()}&§§f(I))| <e
for all instances I.
Let us consider the following example:
( 7
Demand = a
Node 1 att=0

Coverage Radius
Demand = a

Node 1 att=T

Potential Location 1 Potential Location 2

- /

Figure 3.1: An example illustrating the worst case behaviour of RH

In the above example we consider:
Number of potential facility location = 2
Number of facilities to be placed =1

Number of demand nodes = 1
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Demand of node 1 = a
Number of time slots = 7"+ 1
Probability of link failure = p
Relocation cost = b (b > a)

The heuristic starts with finding the expected coverage for all the potential facility
locations at time ¢ = 0 and locates a facility at the location covering maximum
expected demand for that time period. In the above example, potential location 1 is
selected for locating at time ¢ = 0 with expected coverage of (1 — p) * (a) for that
time period. The heuristic again computes the expected demand covered for all the
potential facility locations for the next time period and then considers the tradeoff
between switching to another potential location. In the example for time period
t = 1, potential location 2 has the maximum expected coverage among all potential
locations. Thus RH computes the gain in coverage by switching to potential location
2 and its associated cost. Since the cost of relocating (b) exceeds the gain in coverage
(a), the heuristic decides not to relocate and thus for time period t = 1, the facility
is located at location 1. For all subsequent time periods, the heuristic chooses the
facility to be located at location 1, thereby attaining a coverage of (1 — p) * (a * 1).
By simple observation we can say that the optimal solution is to locate the facility at
potential location 2 for all time periods with total coverage of (1 — p) * (a * T').
Thus we have
o(f(I)) = (1—p)* (e T) and
e(fs(I)) = (1= p) * (ax1)

Hence

le(f(D)—c(F(D)]
c(f(D) Se€
|(1=p)+(ax1)—(1-p)x(asT)]
(1—p)(aT) =
T-1

OI',TSG

or, €

From the above equation, it is clear that the algorithm’s relative error will violate all

constant bounds (e) for appropriate instances. Thus we conclude that the heuristic
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is not an e-approximate algorithm for any 1 > € > 0. In other words the algorithm
performs arbitrarily bad with increasing number of time slots for a high relocation

cost.

3.2 No Relocation Heuristic

No-Relocation Heuristic (NRH) is also a greedy heuristic where the optimal strategy
will be to place facilities at locations which cover maximum demand for all time
periods. The heuristic also takes care of link failure probabilities in a similar fashion

as RH does. A detailed procedure of the NRH is as follows:

1. Calculate the total demand covered by each potential location for all time pe-

riods.

2. Select the potential location with maximum coverage and place the facility at
this location for all the time periods. This potential location is precluded for

future placement.
3. Update the demand of the demand nodes as discussed in the RH earlier.
4. Repeat the above steps until all the facilities are placed.

NRH is also found to perform considerably well for problem instances with high
relocation costs, as described in Chapter 5. Now we will analyze the worst case
error bound for this heuristic as we did in the earlier section. Consider an example
illustrated in Fig. 3.2 with the following parameters:

Number of potential facility location = T' + 2

Number of facilities to be placed =1

Number of demand nodes = 2

Demand of node 1 = a (a >> b)

Demand of node 2 = b

Number of time slots = T + 1
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Probability of link failure = p
Relocation cost (C) =0

Demand = a

Demand = a
Node l att=T

Node 1 att=0

Demand =b ) )
- Potential Location T+1
Potential Location 1 = Node2 att=0
:x Demand =b
Node2 att=T

Potential Location X

Figure 3.2: An example illustrating the worst case behaviour of NRH

NRH calculates the sum of the expected coverage for each potential location for all
time periods, and selects a location which has the maximum sum for locating a facility
at this location for all time periods. Potential location X is selected by the heuristic
for locating a facility for all time periods with the coverage value of (1—p)*b* (T +1).
In this example we can see that demand node 1 moves with time from the coverage
region of one potential location to another. In order to maximize expected coverage,
the facility should be relocated to the potential location covering demand node 1 with
each time period. Thus given a very low relocation cost, the optimal solution to the
scenario is locating a facility at potential location 1 at £ = 0 and thereafter relocating
the facility to the potential location covering demand node 1 in the subsequent time
periods. The expected coverage attained by the solution is (1 —p) *a* (T + 1) (since
C =0.) Thus the worst case error bound of NRH, given that

o(f(I) =1 —p)*xax*(T+1)and
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c(fe(I)=0—p)xbx (T +1)is

IC(fB(I)Z*C(f(I))I
(fay =€
|(1—p)*bx(T+1)—(1—p)*ax(T+1)|
=y ran(T1) e

or,
or, “T_b <e

or,1-%<e
7 =

Note that b (T + 1) > a, since potential location X is chosen as the solution by the
heurisitic. Thus in the worst case, the heuristic can perform arbitrarily bad with the
value of @ >> b. Hence we conclude that the relative error bound of the algorithm
will violate all constant bounds (€) for an appropriate instance as illustrated in the
above example.

Thus we conclude that the heuristic is not an e-approximate algorithm for any

1>¢>0.

3.3 Dynamic Programming Approach

A dynamic programming (DP) approach has also been explored in our work to solve
the Dynamic MEXCLP. The motivation for exploring the DP approach was obtained
from the literature studied in the area of Dynamic Plant Layout Problem. Refer to
the papers by Rosenblatt [57], Batta [9], Balakrishnan et al. [3].

In our case the number of time slots forms the number of stages and all the
feasible solutions of each time period form the states of the dynamic programming
model. Since the number of feasible solutions to each time period is combinatorial, a
stopping criteria, i.e., a bounding technique is required to include the best few feasible
solutions in a dynamic programming approach ensuring that optimality is attained.

Let Z!, be the expected demand covered with solution S, in time period ¢t. Z%,
is the mt* best solution obtained in time period t. Here we intend to find the [,
best solutions for each time period t such that no optimal solution is lost from the

state space diagram as shown in Fig. 3.3 of the dynamic programming model. The
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number of best solutions for each time period that should be included in the state-
space diagram can be restricted using the following results:

Result 1 [57]:- If I, is given by Z{ — Z; < Zyp — Zrp and Z{ — Z} .| > Zyp — ZiB,
then, in any period ¢, no solution with value [ > [; will become part of the optimal
solution.

One of the techniques to find a good upper bound is as follows:

1. Summing up the coverage obtained by the best (optimal) solution of each time

period without considering the relocation cost [57].
Some of the techniques to find a good lower bound are as follows:

1. The coverage obtained by selecting the best solution in each time period and
subtracting from it the relocation cost incurred due to change in the solution

from one time period to the next [57].

2. Keeping the same solution throughout the time horizon [9]. This could be done
by considering the locations of all demand nodes and their demands for different
time periods as a distinct demand node in a single time period and solving the

MEXCLP model to get a lower bound for the Dynamic Programming model.

Result 2 [3]: If I, is given by Z > Z] —4Cn and Z; .| < Z; — 4Cn where

C = Cost per unit change in the number of facilities at any location i,

n = Number of facilities to be located,

then, any stage in the dynamic programming model will have no more than /; states
for time period ¢. In other words the optimal solution will not consist of states with
an expected demand coverage less than Z! — 4Cn.

This strategy works best for a case where the relocation cost is relatively low.

The best solution S; with a value of Z} for each time ¢ can be obtained by solving
the MEXCLP model proposed by Daskin [29]. In order to get the next best solution,
the following additional constraint is added to the MEXCLP model:

Z z; <n—1
1€ESm
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Figure 3.3: State space diagram: Dynamic Programming

where S,,, = {i : z; > 0}

S, is the set of z; which take a nonzero value in the m* best solution for time ¢.
Thus we get Z} by adding the previous constraint to the solution set of Zi. Similarly
by adding the previous constraint to the solution set of Z% Z% is obtained and so
on. Once all the states for all stages are found, the relocation cost incurred between
every states in two consecutive time periods are calculated and then the longest path
algorithm is used to determine the optimal facility locations.

We found a large number of feasible solutions (states) for each stage with the bounds
discussed previously. Since we are solving a MILP several times to get all the states
of the state space diagram, the approach becomes computationally intensive as com-
pared to solving the Dynamic MEXCLP using CPLEX. Hence we did not explore the

approach any further.

3.4 Chapter Summary

In this chapter, we developed two greedy heuristics to solve the Dynamic MEXCLP
model presented in Section 2.3.1. Also we analyzed the worst case error bounds for

each heuristic and showed that both the heuristics can perform arbitrarily bad. A

o4



dynamic programming based approach is also discussed to solve the Dynamic MEX-

CLP.
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Chapter 4

Solution Methodology: A Column
Generation Approach

In the previous chapter two heuristics were proposed to solve the Dynamic MEXCLP
and also their worst case error bounds were presented. Since the worst case behavior
of both the heuristics is arbitrarily bad, an alternative approach is needed to solve the
Dynamic MEXCLP in conjunction with Relocation Heuristic (RH) and No-Relocation
Heuristic (NRH). Thus the idea here is to get the initial solution from the heuristic
and then improve the solution using the column generation (CG) technique in cases

where the heuristic performs bad.

4.1 Introduction

Column generation (CG) heuristic is an efficient and widely used technique to solve
large-scale integer programs. We adopt a modified column generation approach to
solve the Dynamic MEXCLP. The column generation formulation is obtained by
decomposing the original MILP (Dynamic MEXCLP with relocation cost) described
in Section 2.3.1. If the variables z;’s are known then the remaining problem is to
just evaluate the values of y;i;’s and w;;’s to determine the expected demand covered
and the relocation cost incurred. Thus we decompose the MILP formulation into a
“Master Problem” and a “Sub-Problem”.

The Master Problem selects the best column (or solution) for each time period to
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maximize the objective function. Where a column (or a solution) is defined as a
complete set of x;; variable values for a particular time period. Whereas the sub-
problem uses the dual multipliers from the master problem and generates a new
column with a favourable reduced cost for each time period ¢ seperately.

We now define some additional parameters and variables used in the master problem

Master Problem

Dual Multipliers

Columns

Sub Problem

Figure 4.1: Column Generation Flow

and sub-problem for the column generation approach as follows:

F, = set of feasible solutions for time ¢.
Ts: = value of z;; if solution s is selected at time ¢.
Ysjkt = value of y;i, if solution s is selected at time ¢.

The decision variables of the problem are:-
1 if solution s is selected at time ¢
Fst — .
0 otherwise.

4.2 Initial Basic Feasible Solution

The Column Generation(CG) approach works in the feasible domain. The CG heuris-
tic requires an initial basic feasible solution to start with. It starts with this solution
and keeps on improving the objective function value by generating new solutions
termed as “columns” and selecting the one that improves the objective function the

most. The effectiveness of the CG approach is enhanced by the quality of the initial

57



basic feasible solution. Hence it is important to develop a good heuristic for obtain-
ing an initial basic feasible solution. In our work, we start with two basic feasible
solutions for each time period generated by the RH and NRH discussed in previous

chapter.

4.3 Column Generation Formulation-I (CG-I)

Here we decompose the Dynamic MEXCLP into master and sub-problem, such that
the sub-problem fixes the value of z;’s and introduces as a column in the master
problem. The master problem evaluates the set of solutions and selects the one which

gives the maximum objective value.

4.3.1 Master Problem

The decomposed master problem for the CG-I approach is as follows:

T n T
Maximize Y>> (1 —p)p’ 'dryjee — Y Y Cwy

t=0 ke® j=1 t=1icA
subject to
Sy — > > Farim@sir < 0 V k=1,...,|0|,t=0,...,T (4.1
j=1 sEF iEA
—wi+ >, Fa1Zer1— Y Fazee < 0V i=1,...,|At=1,...,T (4.2)
seF;_1 scFy
—’IUit+ Z Fstxsit— Z Fst_lxsit_l S 0 \V/ Z: 1,,|A|,t: 1,...,T (43)
seF; seF;_1
YFy =1 V t=0,...,T (4.4)
sEFy
Fy € {01} V st=0,...,T (4.5)
wy > 0 V oi=1,...,|Al,t=1,...,T4.6)

Yjkt < 1 ijl,,n,kzl,,|@|,t:0,(4,m

In the column generation approach, the master problem is solved as a relaxed
linear program with no binary constraint on the variables. The master problem starts
with an initial basic feasible solution. The basic function of the master problem is

to select the best feasible solution for each time period among the set of feasible
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solutions available for each time period t. Constraints (4.1), (4.2) and (4.3) are
similar to the basic model except that we have variable Fy; instead of z;;, whereas
T is a constant. Constraint (4.4) ensures that only one solution should be selected
for each time period t. Let «,3,7,d be the dual multipliers generated after solving
the relaxed master problem for constraint (4.1), constraint (4.2), constraint (4.3) and
constraint (4.4) respectively. The sub-problem generates the feasible solutions using

these dual multipliers.

4.3.2 Sub-Problem

The sub-problem is formulated in such a way that the new column generated has a
favorable reduced cost to enter the basis of the master problem. The sub-problem is
solved for each time period ¢ separately. The sub-problem for time periods ¢ = 1 to

t =T —1 is as follows:

Maximize Y [Y apelire + Bie — Bir+1 — Yie + Yar1)Tae — O
i€A k€O
subject to

dozy < n (4.8)

ieA
zy € 40,1} \4 i (4.9)
Since the dual multipliers § and v are available for ¢ = 1 to ¢ = T, the sub-problem
for t = 0 and ¢t = T has a different objective function. The objective function of the

sub-problem for ¢t = 0 is as follows:

Z[Z reTikt — Bitr1 + Yier1)Tir — 0y
i€A ke®
and the objective function of the sub-problem for ¢ = T' is as follows:

Z[Z QrtTikt + Bit — Yit|Tit — O

i€A ke®

The solution to the above sub-problem is a new variable F,; which enters the master
problem. Thus the sub-problem generates the new variable in such a way that it will
enter the basis of the master problem.

The sub-problem is very simple to solve, since it is a special case of single constraint

Knapsack problem where the coefficient of each variable in the constraint is same.
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Thus it turns out that if we select the n best locations (in terms of maximum objective
coefficient) and locate a facility at each of these locations, we get the solution to the
integer program. Thus we need not solve the sub-problem using CPLEX.

It is clearly evident that the computational load is not evenly distributed be-
tween the master and the sub-problem. Thus we also propose an alternate way of

decomposing the Dynamic MEXCLP in the following section.

4.4 Column Generation Formulation - IT (CG-II)

In this formulation the sub-problem not only fixes z;;’s, but also evaluates the value
of y;i’s thereby reducing the work of the master problem. Thus the master problem
only evaluates the relocation cost incurred in selecting the solution and selects the

solutions for each time period that gives the maximum objective function value.

4.4.1 Master Problem

The decomposed master problem for the CG-II approach is as follows:

T n T
Maximize > > > > (1= p)p’ 'diFuajer — p_ > Cwy

t=0 k€O j=1 scF; t=1i€A
subject to
—wip+ Y, Fy1Zei-1— » Fayzer < 0V i=1,...,|A|,t=1,...,7(4.10)
s€F;—1 SEF;
—Wir+ Y FaZgi— Y, Fa1Zgmr < 0V i=1,...,|At=1,...,T4.11)
sEF: s€EF;_1
> Fy =1 V t=0,...,T (4.12)
sEF;

F, € {0,1} V st=0,...,T (4.13)

wy > 0Vi=1,...|ALt=1,...,7(4.14)

Also in this column generation approach, the master problem is solved as a relaxed
linear program with no binary constraint on the variables. The master problem starts

with an initial basic feasible solution. The basic function of the master problem is to

select the best feasible solution for each time period among the set of feasible solutions

60



available for each time period ¢. Constraints (4.10) and (4.11) are similar to the basic
model except that we have variable Fy; instead of x;; and y;i:, whereas z; and Y
are constants. Constraint (4.12) ensures that only one solution should be selected
for each time period t. Let (3,7v,d be the dual multipliers generated after solving
the relaxed master problem for constraint (4.10), constraint (4.11) and constraint
(4.12) respectively. The sub-problem generates the feasible solutions using these dual

multipliers.

4.4.2 Sub-Problem

The sub-problem is formulated in such a way that the new column generated has a
favorable reduced cost to enter the basis of the master problem. The sub-problem is
solved for each time period t separately. The sub-problem for time periods ¢ = 1 to

t =T — 1 is as follows:

Maximize Z Z(l — p)p’ iy + Z[ﬁit — Bit41 — Vit + Yit41)Tir — O

ke® j=1 1EA
subject to
S Ykt — D rimzia < 0 V k=1,...,|6 (4.15)
Jj=1 iEA
Yozw < n (4.16)
€A
zy € {0,1} \4 i=1,...,]A] (4.18)

Since the dual multipliers § and v are available for ¢ = 1 to ¢ = T, the sub-problem
for t = 0 and ¢t = T has a different objective function. The objective function of the

sub-problem for ¢t = 0 is as follows:

Z Z(l - p)Pjildkyjkt + Z[—ﬁitﬂ + Yit+1]Tit — O
ke® j=1 i€EA
and the objective function of the sub-problem for ¢t = T is as follows:

Z Z(l - p)pjildkyjkt + Z[th - ’Yz’t]l'it — 0y
ke® j=1 i€A
The solution to the above sub-problem is a new variable Fy; which enters the master

problem. Thus the sub-problem generates the new variable in such a way that it will
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enter the basis of the master problem. Thus for each time period a small MILP is
solved to get the new solution for that time period.
The nice thing about this formulation is that the computational load gets divided

equally between the master problem and the sub-problem.

4.5 Strategies

In our work we adopt two different strategies to solve the problem using column

generation technique.

4.5.1 Strategy I

In this strategy, we solve the LP relaxation of the master problem also called the re-

laxed master problem(RMP) and the subproblem alternatively (in a sequential way).
The algorithm is as follows:

Step 1:- Find the initial basic feasible solution and include it in the RMP. Set Itera-

tion # = 0.

Step 2:- Initialize time ¢ = 0, and increment Iteration # by 1.

Step 3:- Solve RMP.

Step 4:- Obtain dual multipliers for time ¢ and pass to the subproblem.

Step 5:- Solve the subproblem for time ¢ and calculate the reduced cost of the new

variable (solution) generated.

Step 6:- Feed the new solution generated to the RMP and increment time t.

Step 7:- If t < T goto Step 3, otherwise goto Step 8.

Step 8:- If reduced cost of all the new solutions generated for all time periods ¢ = 0

tot =T is less than zero, goto Step 9, otherwise goto Step 2.

Step 9:- Solve the Integer Master Problem and stop.

In this strategy for CG-I, RMP solution converges to a value equal to the original

problem’s linear programming relaxation in a very few iterations, since we solve the
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Figure 4.2: Strategy I

RMP and update the dual multipliers after solving the sub-problem for each time
period. Due to the problem size, solving the RMP after solving the sub-problem for
each time period is computationally intensive. Thus the solution time tends to be
poor in this case. Whereas CG-II tends to work suitably with this strategy since the

work load is evenly shared between master problem and the sub-problem.

4.5.2 Strategy 11

In this strategy we solve the RMP and then solve the subproblem for time period

t =0 to t =T consecutively one after another. The algorithm is as follows:
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Step 1:- Find the initial Basic Feasible Solution and include it in the RMP. Set Iter-
ation # = 0.

Step 2:- Initialize time ¢ = 0 and increment Iteration # by 1.

Step 3:- Solve RMP.

Step 4:- Obtain dual multipliers for time ¢ and pass to the sub-problem.

Step 5:- Solve the sub-problem for time ¢ and calculate the reduced cost of the new
variable (solution) generated.

Step 6:- Increment ¢t =t + 1; if ¢t < T goto Step 4 otherwise goto Step 7.

Step 7:- If the reduced cost of the new solutions generated for all time periods t = 0
tot = T is less than zero, goto Step 9; otherwise goto Step 8.

Step 8:- Feed solutions generated for all time periods to RMP and goto Step 2.

Step 9:- Solve the Integer Master Problem and stop.

In this strategy the solution time is lesser compared to Strategy I, since we solve
the RMP after solving the subproblem for all time periods t. Thus we achieve the
solution in lesser time but the number of iterations is larger, since we do not have
updated dual multipliers at every step.

The cycle of passing the dual multipliers to the subproblem and passing a feasible
solution to the master problem continue until no more improvement in the objective
function value of the relaxed master problem is possible. At the end of both the
strategies, we solve the Integer Master Problem since we are interested in selecting

only one best solution for each time period.

4.6 Solving Integer Master Problem

After performing several iterations of solving RMP, when the termination criteria is
reached the integer master problem (IMP) is solved. The IMP finds the best feasible
solution for each time period for the overall problem. We can model the IMP as a

Longest Path Problem (LPP) with time periods as stage and solutions for each time
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Figure 4.3: Strategy II

period as the states of the state space diagram. The arc lengths represent the gain
in expected coverage if you travel through that arc. Thus the solution to the longest
path algorithm consists of travelling through one solution for each time period. The
solution time for solving the IMP drastically reduces by solving it by longest path

algorithm.

4.7 Termination Criteria

In the previous section, the termination criterion for the RMP is the traditional CG
termination criterion, where the reduced cost of the generated columns is less than

zero (as evident from Fig. 4.2 and Fig. 4.3). This is true because a (nonbasic)
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Figure 4.4: State Space Diagram: Integer Master Problem

variable with a negative reduced cost will never enter the basis of a RMP with a
maximization objective function. In certain cases, the CG heuristic will keep on
iterating with a very small increase in the objective function of the RMP. In such
cases, we can terminate the CG heuristic when the desired solution quality has been
obtained (i.e., the objective function value of the RMP is within a certain percentage
of the linear programming relaxation of the original problem). This will improve the
solution time of the CG approach. Another possible termination criterion can be a
threshold time within which a solution is required. Bound on the number of iterations

can serve as a good termination criteria.

4.8 Chapter Summary

In this chapter, we proposed a column generation based methodology to solve the
Dynamic MEXCLP model presented in section 2.3.1. The Dynamic MEXCLP model
is decomposed into a master problem and a sub-problem. Also two different strategies

are proposed for solving the decomposed model using column generation technique.
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Chapter 5

Computational Experiments and
Detailed Numerical Analysis

In the previous chapters, we described the Dynamic MEXCLP in detail and presented
several formulations for the same. In Chapter 3 and 4, solution methodologies are
developed to solve the Dynamic MEXCLP. Two heuristics were presented in Chapter
3 and two alternate column generation approaches were discussed to solve the basic
model (Dynamic MEXCLP with relocation) by decomposing it into a Master Problem
and a Sub-Problem as shown in Chapter 4.

In this chapter, we present a detailed description of the code developed for the CG
heuristic and also to carry out the numerical analysis. In Section 5.1, we describe
the different parameters governing the problem size and complexity and the software
implementation for solving the Dynamic MEXCLP. In Section 5.2, a detailed analysis
of a scenario is presented, where we can observe the model behavior with varying
parameter values and their effect on the computation time. In Section 5.3, analysis
of variance is conducted to determine the effect of the parameters on the solution
quality and the time to solve the problem. Also this forms the basis to statistically
infer which solution methodology works better in terms of solution time and the value
of objective function. Also we present computational time and solution for large size
problems. In Section 5.4, a regret analysis is carried out for a particular problem
instance when the value of p is uncertain. This ensures that a stable solution can

be obtained for a range of p values. The computational experience is summarized in
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Section 5.5.

5.1 Input Parameters and Software Implementa-
tion

5.1.1 Input Parameters

In this section we describe the parameters governing the problem structure.

1. n: Maximal number of facilities available for any given time period.
The value of n changes the expected coverage attained. For a case where p = 0,
the coverage increases with increasing n until a threshold value of n is reached.
Further increase in n has no effect on the objective function value of the prob-
lem. For a case where p > 0, increase in n increases coverage unless all the
potential locations covering at least a single demand node have been used for
facility location (since the maximum number of facilities allowed at a location

is restricted to 1).

2. Displacement Range: The maximum displacement possible in X and Y di-

rection per unit time.

3. Displacement: This parameter specifies the displacement of the sensors in
X and Y directions per unit time. It is randomly generated between 0 and

displacement range.

4. Potential Location Range: This parameter defines the region within which
the potential facility locations are randomly distributed. E.g., if the value of
potential location range is 100, z and y coordinates of all the potential facility
location are randomly distributed between 0 and 100. The z coordinate is fixed

to 10.

5. Sensor Location Range: This parameter defines the region within which

the sensors are located at time ¢ = 0. The location of a particular sensor at
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10.

11.

12.

13.

subsequent time slots is calculated based on the displacement of that sensor per

unit time.

Data Range: This parameter specifies the interval between which the demand

of the sensors lies.

|Al: This parameter specifies the number of potential locations available for
locating facilities, where A is the set of all potential facility locations. We

assume that the facilities are allowed to be located at only discrete locations.

|©|: This parameter specifies the number of sensors, where © is the set of all

SENnsors.

U: This parameter defines the coverage radius within which a facility can cover

a Sensor.

d: Demand of each sensor that needs to be fused per time period (generally it
is in megabytes). E.g. a radar scans a given region and generate its report and
this is to be fused by the facility (clusterhead). Thus the amount of data sent

at each periodic interval forms the demand in these models.
p: Specifies the probability of link failure between the facility and sensors.

C: The relocation cost incurred per unit change in the number of facilities

placed at a location between two successive time periods.

T: The value of T signifies that the time horizon under consideration is 0 to 7.

Thus we have T+ 1 time slots for which the problem is to be optimized.

5.1.2 Software Implementation

The Column Generation heuristic is coded in C and CPLEX 7.1 solver is used for

solving the Relaxed Master Problem at each iteration of the CG heuristic and the

Integer Master Problem at the end of CG heursitic. The experiment was carried out
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on a Intel Pentium 4 processor, 1700 MHz, 512 MB RAM operating on Windows
platform.

The following is a detailed stepwise description of the software implementation:

1. Input Parameters: In this module of the program, we set the value of parameters
that define the problem scenario, such as n, p, C, |A|, |©|, U, T, Potential

Location Range, Sensor Location Range, Data Range and Displacement Range.

2. Generate Data(): This module generates the problem randomly based on the
value of the input parameters set in the previous module, such as coordinates of
the potential facility locations (same for all time periods), sensor locations for
time t = 0, sensor locations for the remaining time periods (calculated based
on the displacement of each sensor per unit time). This module also calculates
the reachability matrix which defines whether a potential facility location is
capable of covering a demand node at time ¢. The demand of each sensor is also

randomly generated by this module (between the data range specified earlier).

3. Initial BFS(): In this module, basic feasible solutions are obtained for the prob-
lem scenario generated in the previous steps using two greedy heuristics. We

start with two feasible solutions (columns) for the CG heuristic.

4. Generate RMP(): This module writes the Relaxed Master Problem (RMP)
formulation in a “.LP” format. This file is called RMP.Ip.

5. Solve the RMP with CPLEX: In this module, we read the RMP.Ip into the
CPLEX environment and solve using CPXlpopt(). CPXlpopt() is an in built
procedure of CPLEX callable library, which solves a linear programming for-
mulation using the best technique applicable to the problem. In our case

CPXlpopt() uses the Dual Simplex algorithm to solve the problem.

6. Store Dual Multipliers: Here the dual multipliers for the relevant constraints

are stored using CPXgetpi() (CPLEX callable library function).
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Figure 5.1: Software Implementation Flow Chart
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7. Sub-Problem(): In this module, depending on the strategy selected to solve the
CG, the sub-problem for different time periods are constructed based on the dual
multipliers obtained from the RMP. For CG-I, the constructed sub-problem is
a single constraint Knapsack problem with the coefficient of each variable in
the constraint being same. Thus the sub-problem has an intuitive solution and
hence we need not solve it using CPLEX. For CG-II the sub-problem for each
time period is solved using CPLEX MIP solver.

8. Add Column(): In this module, the newly generated solution for each time

period is added to the basis of the RMP.Ip with the function CPXaddcols().

9. Solve Integer Master Problem: In this step a longest path algorithm is solved
to get the optimal feasible solution for the CG procedure.

Finally we print the final solution obtained. It is important to note that some steps of
the code are strategy specific. In this section, we describe the software implementation

for a case where strategy II is selected.

5.2 Detailed Analysis of a scenario

In this section we consider a particular problem instance with the parameters listed
in Table(5.1).

We study the effect of varying p and C' on the objective function value and solution
time. p varies between 0 and 1 in intervals of 0.1. Whereas C varies between 0 and
50 in intervals of 1. The basic aim is to study the model behavior by varying these

parameters.

5.2.1 Effect of varying p on the model behavior

Comparison of objective function value with varying p value

It is obvious that with increasing probability of link failure (p), the expected coverage

decreases and becomes zero at p = 1, as depicted in Table(5.2).
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I Parameter | Range/Value |
Potential Location Range 0-1000
Sensors Location Range 0-500
Data Range 10-10
Displacement Range 0-10
n 10
|A| 300
€] 200
U 100
Time slots (T + 1) 11

p

varying between 0 and 1

C

varying between 0 and 50

Table 5.1: Range of parameters

Comparison between CPLEX, RH, NRH
and CG solution for C' =3
| p [CPLEX| RH | NRH | CG |
0 20820 20126 20330 20686
0.1 || 19054.44 || 18496.41 || 18310.5 | 18967.92
0.2 || 17337.52 || 16903.04 || 16705.6 | 17201.6
0.3 || 15597.47 || 15256.81 || 15020.81 || 15449.12
0.4 || 13793.04 || 13528.32 13326 13641.6
0.5 || 11890.25 || 11766.5 | 11526.25 || 11784.75
0.6 | 9896.32 || 9815.82 9641.6 9830.88
0.7 || 7765.68 || 7690.77 | 7590.81 | 7733.34
0.8 || 5431.04 || 5375.29 | 5327.04 | 5399.52
0.9 || 2853.13 || 2786.47 || 2805.45 | 2809.34
1 0 0 0 0

Table 5.2: Effect of varying p on objective function value
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Figure 5.2: Effect of varying p on objective function value

In Table(5.2), we show the value of the objective function using CPLEX, RH, NRH
and CG heuristic with varying p values for C' = 3 where the rest of the parameters
are as defined in Table(5.1). Also the graph shown in Fig. 4.2 depicts that CG
objective function value is almost equal to the CPLEX objective function since CG
is a heuristic. We also observe that the gaps between the CG and CPLEX solutions

are negligible.
Comparison of solution time with varying p value

In this section, we observe the effect of p varying on the solution times for both
CPLEX and CG heuristic.

From Table(5.3), we clearly observe that problems with low values of p are tougher
to solve with both CPLEX and CG heuristic. This may not be true in all cases for the
CG heuristic since CG depends on the initial basic feasible solution. The solution time
for RH and NRH does not vary with p. Also the graph shown in Fig. 5.3 clearly shows
that CG performs better than solving the integrated problem (Dynamic MEXCLP
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Solution time in seconds for C = 3
| p [CPLEX | RH | NRH| CG |
0 1741 0.203 || 0.203 || 4.172
0.1 444 0.203 || 0.203 || 3.218
0.2 115 0.187 || 0.204 || 3.109
0.3 91 0.203 || 0.203 || 3.172
0.4 71 0.203 || 0.203 || 3.125
0.5 67 0.203 || 0.203 || 3.109
0.6 25 0.203 || 0.219 || 2.938
0.7 4 0.203 || 0.204 || 2.828
0.8 3 0.203 || 0.203 || 2.796
0.9 3 0.203 || 0.204 || 2.703

Table 5.3: Effect of varying p on solution time

Solution time for varying p
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Figure 5.3: Effect of varying p on solution time
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with relocation as explained in Section 2.3.1) with CPLEX.
The termination criteria selected for the CG heuristic is to stop if the gap between

RMP solution and LP relaxation of the original problem is within 2 %.

5.2.2 Effect of varying C' on the model behavior

The relocation cost is an important factor determining the frequency with which a
facility changes its location between two consecutive time periods. In this section,
we observe the effect of varying the relocation cost incurred for a unit change in the

number of facilities at a location (C') between two consecutive time periods.

Comparison of objective function value with varying C value

In this section, we compare the objective function value obtained by CPLEX and
CG heuristic. The objective function value decreases with increase in the relocation
cost until a threshold is reached. Further increase in C has no effect on the objective
function value. It is clearly depicted in the graph of Fig. 5.4. Also from the graph,
we can see that CG procedure improves the heuristic solution for the cases where
relocation cost is low. For high relocation cost NRH performs considerably good and
CG is not able to improve it any further in the stipulated time (or in the limited

iterations allowed).
Comparison of solution time with varying C' value

In this section, we observe the effect of C value on the solution time for both CPLEX
and CG heuristic. CG tends to work well with low C value for all p’s, but with
increasing relocation cost, mix results are seen. Fig. 5.5 shows the effect of C' on the

solution time for both CPLEX and CG for different p values.

5.2.3 Effect of varying n on the model behavior

Here we vary the number of facilities available for each time period and observe

its effect on the objective function value and the solution time. For both CPLEX
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Figure 5.4: Effect of varying C' on objective function value

and CG, the objective function value increases with increase in n until a threshold
is reached. Beyond this, increase in n has no effect on the objective function value.
CPLEX solution time is maximum for intermediate values of n. Whereas CG solution

time is always negligible as compared to CPLEX solution time.

5.2.4 CPLEX solution within CG solution time

In Table(5.4), the objective function value obtained using CPLEX and CG heuristic
are shown along with the CPLEX solution found within CG solution time. In none of

the above case a feasible solution was found using CPLEX within CG solution time.

5.2.5 Improvement in solution quality using CG over RH and
NRH

Here, we observe improvement achieved by CG over Relocation Heuristic (RH) and
No Relocation Heuristic (NRH) solution. Table(5.5) and summarizes RH, NRH and
CG solution for C = 3 with varying p. Also % improvement of CG heuristic over RH
and NRH is shown.
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CPLEX solution value found within CG solution time for C = 3

D CPLEX CG % gap between | CPLEX solution
solution || time || solution || time (4) and (2) within CG time
(1) (2) (3) (4) (5) (6) (7)
0 20820 1741 20686 4.172 0.64 NFSF
0.1 || 19054.44 || 444 | 18967.92 | 3.218 0.45 NFSF
0.2 || 17337.52 || 115 17201.6 || 3.109 0.78 NFSF
0.3 || 15597.47 91 15449.12 || 3.172 0.95 NFSF
0.4 || 13793.04 71 13641.6 || 3.125 1.1 NFSF
0.5 || 11890.25 67 11784.75 || 3.109 0.89 NFSF
0.6 || 9896.32 25 9830.88 || 2.938 0.66 NFSF
0.7 | 7765.68 4 7733.34 || 2.828 0.42 NFSF
0.8 || 5431.03 3 5399.52 || 2.796 0.58 NFSF
0.9 || 2853.13 3 2809.34 || 2.703 1.33 NFSF

NFSF: No Feasible Solution Found

Table 5.4: CPLEX objective function value within CG solution time
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RH, NRH and CG solutions for C = 3
P RH NRH CG % improvement || % improvement
over RH over NRH
0 20126 20330 20686 2.71 1.72
0.1 || 18496.41 || 18310.5 || 18967.92 2.49 3.47
0.2 || 16903.04 | 16705.6 17201.6 1.74 2.88
0.3 || 15256.81 || 15020.81 || 15449.12 1.24 2.77
0.4 || 13528.32 13326 13641.6 0.83 2.31
0.5 | 11766.5 | 11526.25 || 11784.75 0.15 2.19
0.6 || 9815.82 9641.6 9830.88 0.15 1.93
0.7 || 7690.77 | 7590.81 7733.34 0.55 1.84
0.8 || 5375.29 5327.04 | 5399.52 0.45 1.34
0.9 || 2786.47 | 2805.45 2809.34 0.81 0.14

Table 5.5: Comparison between RH, NRH and CG solution

5.3 Analysis of Variance

Here we carry out an experiment to determine whether there is a significant difference
in the solution methodologies viz. CPLEX and CG (using heuristic solution as the
initial basic feasible solution) in terms of the following stated performance measures

(Henceforth will be referred as responses).

1. Response 1: Deviation (percentage gap between objective function of the solu-

tion methodology and the LP relaxation of the problem)
2. Response 2: Solution Time

The primary motive of this effort is to compare the solution methodologies with
the above defined responses at different combinations of the problem parameters (also
referred as factors) and to verify the effect on responses with interactions between
the parameters.

The following factors were considered to be relevant to the quality of the response:-
1. Solution Methodology

2. Number of Facility
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3. Number of Potential Location

4. Number of Demand Node (Sensors)
5. Velocity (Displacement)

6. Demand Data (Data Range)

7. Probability of failure

8. Relocation Cost

9. Number of time slots

In this analysis, coverage radius was ignored, since displacement and coverage radius

are corelated.

5.3.1 Screening Experiment: Fractional Factorial Design

Considering the enormity of the number of factors, that may influence the response,
it was decided that a screening experiment be performed to begin with, and screen
out the insignificant factors and their insignificant higher level interactions, so that
the responses could be analyzed and explained in terms of the significant ones.

A 2F=™ fractional factorial design of resolution IV was designed as the screening
experiment with a single replicate. This means each of the factor would be considered
at 2 levels arbitrarily (Low and High designated as —1 and +1 respectively) and the
k refers to the number of factors = 9 and m = 4. A single replicate would require
only 32 runs as compared to 2° experiments if a full factorial design was conducted.
By choosing such a design we usually assume that the high order interactions are
negligible and this greatly simplifies the problem structure.

The a-level or level of significance considered was 0.05. The level of the factors

chosen are as shown in Table(5.6).
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Sr. No. | Factors Low level (-1) | High level (+1)
A Method CPLEX CG
B Probability of Failure (p) 0.2 0.7
C Relocation Cost (C) 10 100
D Number of Facility (n) 5 10
E Number of Potential Location (Delta) 100 200
F Number of Sensors (Theta) 100 200
G Number of Time Slots (T) 5 15
H Data Range 10 50
J Displacement 10 40

Coverage radius is fixed at 80

Table 5.6: Fractional Factorial Design: Parameter Value

Design of Fractional Factorial experiment: Minitab Results

The screening experiment was carried out on Minitab and the Minitab results are as

follows:
Factors: 9 Base Design: 9, 32 Resolution: IV
Runs: 32 Replicates: 1 Fraction: 1/16
Blocks: none Center pts (total): 0

Design Generators: F = BCDE G = ACDE H = ABDE J = ABCE

Defining Relation: I = BCDEF = ACDEG = ABDEH = ABCEJ = ABFG = ACFH
= ADFJ = BCGH = BDGJ = CDHJ = DEFGH = CEFGJ = BEFHJ = AEGHJ =
ABCDFGHJ

The Randomized data matrix generated by Minitab and the response value obtained
is as shown in Table(5.7).

Response variable 1: Deviation from LP Relaxation:

In the following table we show results only for the parameters and interactions which

were found significant.

Term Effect Coef | SE Coef T P
Method 1.7355 | 0.8677 | 0.02851 | 30.44 | 0.021
T 0.6541 | 0.327 | 0.02851 | 11.47 | 0.055
p*Data Range | 0.648 | 0.324 | 0.02851 | 11.37 | 0.056
n*Delta 0.6766 | 0.3383 | 0.02851 | 11.87 | 0.054

Thus we see that Solution Methodology, number of Time Slots, probability of link
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Std Run | Method | p | C | n | Delta | Theta | T | Data | D.ment | Dev | Time
Order | Order Range
1 1 -1 -17-11-1 -1 1 1 1 1 0.00 | 2.44
28 2 1 1]-1]1 1 -1 -1 1 -1 1.80 | 0.61
32 3 1 1111 1 1 1 1 1 2.70 | 107.89
31 4 -1 11171 1 1 -1 -1 -1 0.00 | 1.67
13 5 -1 111 -1 1 1 -1 -1 0.00 | 15.31
6 6 1 101 -1 -1 -1 1 -1 1 3.34 | 26.41
5 7 -1 101 -1 -1 -1 -1 1 -1 0.00 | 0.45
18 8 1 -1-17-1 1 -1 1 1 1 0.33| 1.13
26 9 1 -17-11 1 1 -1 -1 1 2.34 | 1541
15 10 -1 1111 -1 -1 1 1 1 0.85 | 7.34
11 11 -1 1]-1]1 -1 1 -1 1 -1 0.00 | 2.83
16 12 1 11171 -1 -1 -1 -1 -1 0.20 | 0.11
19 13 -1 11-1]-1 1 1 -1 1 1 0.00 | 1.34
24 14 1 1]17]-1 1 -1 -1 -1 1 0.51| 0.13
14 15 1 1711 -1 1 -1 1 1 2.04 | 5.11
7 16 -1 1]17]-1 -1 1 -1 -1 1 0.00 | 1.16
2 17 1 -1-11-1 -1 1 -1 -1 -1 197 | 0.11
17 18 -1 -1 -1 1 -1 -1 -1 -1 0.00 | 1.08
21 19 -1 171 (-1 1 1 1 -1 1 0.00 | 23.34
4 20 1 1]-1]-1 -1 -1 -1 1 1 1.84 | 0.08
10 21 1 -17-111 -1 -1 1 1 -1 1.78 | 0.28
8 22 1 1]11-1 -1 1 1 1 -1 1.57 | 0.30
12 23 1 1]-1]1 -1 1 1 -1 1 2.15| 9.58
22 24 1 171 (-1 1 1 -1 1 -1 0.00 | 0.17
20 25 1 1]-1]-1 1 1 1 -1 -1 2.65 | 12.31
29 26 -1 1711 1 -1 -1 1 1 0.00 | 4.11
3 27 -1 11-1]-1 -1 -1 1 -1 -1 0.00 | 1.16
9 28 -1 1171 -1 -1 -1 -1 1 0.11 | 8.92
23 29 -1 1]1]-1 1 -1 1 1 -1 0.00 | 2.78
27 30 -1 1]-1]1 1 -1 1 -1 1 0.72 | 20.34
25 31 -1 111 1 1 1 1 -1 0.47 | 26.33
30 32 1 111 1 -1 1 -1 -1 4.69 | 70.73

Table 5.7: Fractional Factorial Design: Data Matrix (Randomized)
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failure, Data Range, number of facilities and number of potential locations directly
affects or the interactions between these parameters have effect on the response vari-
able Deviation.

Response variable 2: Time to solve:

From the ANOVA table it was observed that none of the factors or the two-level
interactions are significant. But by experience we know that some of the factors
do affect the time to solve a problem. Hence, we increased the level of significance
(a = 0.18) to take into account at least a few important factors and interactions as

shown in the following table.

Term Effect | Coef | SE Coef T P
n 13.888 | 6.944 1.702 | 4.08 | 0.153
Delta 12.987 | 6.494 1.702 | 3.82 | 0.163
T 17.775 | 8.887 1.702 | 522 | 0.12
Method*C 11.226 | 5.613 1.702 | 3.3 | 0.187
p*Data Range | 12.376 | 6.188 1.702 | 3.64 | 0.171
n*Delta 11.714 | 5.857 1.702 | 3.44 | 0.18
Delta*T 12.269 | 6.134 1.702 | 3.6 |0.172

The number of cluster heads, number of potential location, number of time slots,
solution method, relocation cost , probability of failure and data range has an effect
on the solution time either directly or through second level interactions.

From the screening experiment, the significant factors were noted and a parametric

experiment was run at different levels of the significant factors.

5.3.2 Parametric Experiment

When the significant factors were screened out from the screening experiment for both
the responses, it is observed that almost the same parameters affected the responses.
Since the ultimate aim of this experiment is to compare both the solution methodolo-
gies with respect to Solution quality and Solution time, same factors were tested for
the responses. We performed a six-way ANOVA with the factors listed in Table(5.8)
with an additional factor of Solution Method (CG and CPLEX). The result showed
that the Solution Method was significant for both Deviation and Solution Time.

The means for deviation and time are plotted for both CG and CPLEX. It is
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evident from the plot that CG performs better than CPLEX in terms of Solution
time. Whereas CPLEX gives a better objective function value. Fig. 5.7 and Fig. 5.8

shows the mean deviation and time for both the solution methodology.

Main Effects Plot - Data Means for DEV

DEV

CG CPLEX
Method

Figure 5.7: CG vs CPLEX: Deviation

Since solution method is itself significant and thus the response variable becomes
dependent on what solution methodology was chosen. Thus in order to see the true
effect of the parameters on the response variables, we perform a five-way ANOVA for

each solution methodology. The levels of the factors are shown in Table(5.8).

Factor No. of levels Value
1 2 3 4
Facilities (n) 2 5 |10 | * *
Time Slots (T) 2 5 | 10 | * *
Location (Delta) 3 200 | 400 | 600 | *
p 3 010509 *
C 4 ) 20 | 80 | 320

Table 5.8: Parametric Experiment: Factor Levels and Value

This defines a Five-way ANOVA for each method which has 5 main effects; 10, 2-
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Main Effects Plot - Data Means for Time
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Figure 5.8: CG vs CPLEX: Time

level interactions; 10, 3-level interactions; 5, 4-level interactions and finally 1, 5-level
interaction.

By the Sparsity of Effects Principle [44], most of the systems are dominated by
some of the main effects and low order interactions, and most high order interactions
are negligible. Also higher levels of interactions are difficult to interpret. Thus in this
analysis, we will restrict ourselves to the 5 main effects and 10, 2-level interactions

only. We throw the high level of interaction as error term in the model.
Parametric Experiment: Minitab Results for CG

An experiment was conducted with the 5 factors at the levels described in Table(5.8).
The Minitab results for the parametric experiment is as follows:

Response variable 1: Deviation from LP Relaxation:

In the Table(5.9) the factors and the interactions which were found to be significant
at a = 0.05 significance level is listed.

Response variable 2: Time to solve:
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DEV

Source | DF Seq SS | Adj SS | Adj MS F P
n 1 2.6881 2.6881 2.6881 | 4.67 | 0.033
T 1| 32.2923 | 32.2923 | 32.2923 | 56.09 0
Delta 2 3.511 3.511 1.7555 | 3.05 | 0.052
P 2 54.276 54.276 | 27.138 | 47.13 0
C 3| 66.7008 | 66.7008 | 22.2336 | 38.62 0
n*C 3| 17.0839 | 17.0839 | 5.6946 | 9.89 0
T*C 3| 19.1042 | 19.1042 6.3681 | 11.06 0
p*C 6 | 144.5894 | 144.5894 | 24.0982 | 41.85 0

Table 5.9: Significant Factors and Interactions: CG Deviation

CG Main Effects Plot - Data Means for DEV

Delta p C

Figure 5.9: CG Main Effect Plot for Deviation
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CG Interaction Plot - Data Means for DEV
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Figure 5.10: CG Interaction Plot for Deviation

Source | DF | Seq SS | Adj SS | Adj MS F P
n 1 | 10066.5 | 10066.5 | 10066.5 | 25.34 0
T 1| 10512.3 | 10512.3 | 10512.3 | 26.46 0
Delta 2| 72185 | 72185 | 3609.3 | 9.08 0
p 2|1 10649.6 | 10649.6 | 5324.8 | 13.4 0
C 3| 26872.7 | 26872.7 | 8957.6 | 22.55 0
n*T 1| 1750.6 | 1750.6 | 1750.6 | 4.41 | 0.038
n*C 3 12942 12942 4314 | 10.86 0
T*p 2| 3017.2 | 3017.2| 1508.6 3.8 | 0.026
T*C 3| T437.1| T437.1 2479 | 6.24 | 0.001
p*C 6 | 31892.9 | 31892.9 | 5315.5 | 13.38 0

Table 5.10: Significant Factors and Interactions: CG Time
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CG Main Effects Plot - Data Means for Time
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Figure 5.11: CG Main Effect Plot for Solution Time

Table(5.10) shows that all the parameters are significant for response variable
Time. The main effect and the interaction plots for Deviation are shown in Fig. 5.9
and Fig. 5.10 respectively. The main effect and the interaction plots for Time are

shown in Fig. 5.11 and Fig. 5.12 respectively.
Parametric Experiment: Minitab Results for CPLEX

The same set of parameters were used for both CG and CPLEX and the analysis for
CPLEX are presented as follows.

Response variable 1: Deviation from LP Relaxation:

In Table(5.11), the significant factors and the interactions affecting Deviation of
the CPLEX solution from LP relaxation are listed. The main effect plot and the
interaction plots are as shown in Fig. 5.13 and Fig. 5.14 respectively.

Response variable 2: Time to solve:

From Table(5.12), we see that except Delta (Number of Potential Locations) all
the factors are significant for response Time, whereas for Deviation all are significant.
The main effect plot and the interaction plot for Time is as shown in Fig. 5.15 and

Fig. 5.16 respectively.
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CG Interaction Plot - Data Means for Time
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Figure 5.12: CG Interaction Plot for Solution Time

Source | DF | Seq SS | Adj SS | Adj MS F P
n 1| 1.67057 | 1.67057 | 1.67057 | 37.72 0
T 1] 0.99298 | 0.99298 | 0.99298 | 22.42 0
Delta 21 05228 | 0.5228 | 0.2614 5.9 | 0.004
P 2 | 5.42748 | 5.42748 | 2.71374 | 61.27 0
C 3| 1.50217 | 1.50217 | 0.50072 | 11.31 0
n*Delta 21 0.32843 | 0.32843 | 0.16421 | 3.71 | 0.028
n*p 2 | 1.68803 | 1.68803 | 0.84402 | 19.06 0
T*p 2| 0.44955 | 0.44955 | 0.22478 | 5.07 | 0.008
T*C 31 0.55531 | 0.55531 | 0.1851 | 4.18 | 0.008
Delta*p 4 10.47685 | 0.47685 | 0.11921 | 2.69 | 0.035
p*C 6| 1.01118 | 1.01118 | 0.16853 | 3.81 | 0.002

Table 5.11: Significant Factors and Interactions: CPLEX Deviation
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CPLEX Main Effects Plot - Data Means for DEV

Delta

0.48

0.36

0.24
0.12
000 | | | | | ol
© Q © NSRS © be(’)f@@(b@
Figure 5.13: CPLEX Main Effect Plot for Deviation
Source | DF Seq SS Adj SS | Adj MS F P
n 1| 87568068 | 87568068 | 87568068 | 22.36 0
T 1| 40742691 | 40742691 | 40742691 | 10.4 | 0.002
p 2 | 1.66E+08 | 1.66E+408 | 82873669 | 21.16 0
C 3| 59429417 | 59429417 | 19809806 | 5.06 | 0.003
n*T 1| 37309706 | 37309706 | 37309706 | 9.53 | 0.003
n*p 2 | 1.55E+08 | 1.55E+08 | 77349953 | 19.75 0
n*C 3| 53810388 | 53810388 | 17936796 | 4.58 | 0.005
T*p 2| 66955727 | 66955727 | 33477864 | 8.55 0
p*C 6 | 1.04E+08 | 1.04E+08 | 17357108 | 4.43 0
Table 5.12: Significant Factors and Interactions: CPLEX Time
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CPLEX Interaction Plot - Data Means for DEV
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Figure 5.14: CPLEX Interaction Plot for Deviation

5.3.3 Discussion

The parametric experiment validates that CG performs better in terms of solution
time and the mean Deviation is 1.8%. From the main effects plot for CG time and
CPLEX time, we observe that solution time decreases with increasing p. Solution
time is maximum for intermediate values of relocation cost. Other effects observed
were with increasing number of facilities (n), number of Time Slots (T) and number
of potential Locations (Delta), the solution time increases. It is obvious that with
increasing T, Delta the time increases since the problem size increases. The effect
of n on time does not truly reflect the behavior since we had only two levels of n.
In Section 5.2, we observed the solution time with increasing n and found that for
intermediate values of n it takes the maximum time to solve the problem. A similar

pattern is observed for Deviation.
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CPLEX Main Effects Plot - Data Means for Time
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Figure 5.15: CPLEX Main Effect Plot for Solution Time

CPLEX Interaction Plot - Data Means for Time
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Figure 5.16: CPLEX Interaction Plot for Solution Time
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Number of Facilities = 15 - 30; Number of Potential Locations = 800 - 1000
Number of Sensors = 400 - 500; Number of Time Slots = 10 -15;
Probability of Link Failure = 0.1 - 0.3; Relocation Cost = 60 - 100

Demand = 50 - 100; Coverage Radius = 80; Displacement = 0 - 60

Sr. CG CG Time | CPLEX | CPLEX | CG % gap % Improvement
No. | Solution (sec) Solution | Time with LP | over heuristic solution
1 | 38914347 | 321.77 NFSF | > 4 hrs 3.73 1.46
2 | 379934.40 4.99 NFSF | > 4 hrs 1.57 0.00
3 | 318656.64 4.34 NFSEF | > 4 hrs 1.36 0.00
4 | 340129.02 4.84 NFSF | > 4 hrs 1.32 0.00
5 | 472456.44 6.77 NFSF | > 4 hrs 0.95 0.00

NFSF: No Feasible Solution Found

Table 5.13: Computational Results

5.3.4 Computational Results for large size problem

The analysis of variance revealed the effect of each parameter on the solution time
and deviation. In this section results are presented for instances that showed the
maximum computational time to solve. Here we terminate the CG procedure if the
Relaxed Master Problem is within 2% of the LP relaxation.

From Table(5.13), we can see that CPLEX is not able to find a feasible solution
within 4 hrs of computational time in all of this cases. Whereas Column Generation
(CG) heuristic along with the RH and NRH heuristic finds a feasible solution within
4% of the LP relaxation. We know that solution of RH and NRH heuristic forms
the initial basic feasible solution for the CG. In the last 4 instances, we can see that
the heuristic solution is itself within 2% of the LP relaxation and hence it shows
the solution time less than 10 seconds. In the first instance the CG performs 11
iterations before terminating and solving the Integer Master Problem. The Relaxed
Master Problem is within 2% of the LP relaxation and the final integer solution gap
is 3.73% from the LP relaxation. Also it shows that CG improves over the heuristic

solution by 1.46%.
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5.4 Regret Analysis

In the previous chapters and sections, we provided a tool for solving the Dynamic
MEXCLP with relocation to maximize the expected demand coverage. The optimal
facility location strategy was formulated assuming that the probability of link failure
is known. However, this may not be true in some scenarios. We may have knowledge
of the range within which p lies, as opposed to the exact value of p. To determine the
optimal location strategy in such a scenario, the “minimax regret analysis” is carried
out. Minimax regret analysis is outlined as follows:

Let us consider a range of probabilities of failure P € [p;, p,| such that p; < p,. Let
the optimal solution corresponding to probability of failure p; be s; € S and the
corresponding objective function value be f(s;,p;).

Let r(sj,pi) = f(si,pi) — f(sj,p:), (¢ # j) denote the regret (or loss incurred in
expected coverage) due to selection of the solution s; for probability p;, instead of the
solution s;. We note here that r(s;,p;) = 0.

Let r(s;) = maxp,cpr(s;,p;), which denotes the maximum regret corresponding to
solution s; over P. Our objective is to determine the solution s; € S that minimizes
the maximum regret, expressed mathematically as follows:

mingesr(s;), i.e. ming,csmazy,cpr(s;,pi)

Let us consider a scenario with the parameters as listed in Table(5.14. Here we carry
out the minimax regret analysis with the optimal solutions obtained for the given
range of probabilities at intervals of 0.1.

Table(5.15) shows the objective function value obtained by selecting a solution for
a particular probability of link failure p. The optimal solution for each p value are
shown in bold.

Table(5.16) displays the regret of selecting a particular solution for different values
of p in the given range. The bold values in the first 6 columns represent the maxi-
mum regret for that particular solution and are listed in the last column. Whereas

the bold value in the last column corresponding to the solution sg 5 is the minimax
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| Parameter | Range/Value ||
Potential Location Range 0-1000
Sensors Location Range 0-500
Data Range 10-50
Displacement Range 0-10
n 10
|A| 400
|©| 200
D 50
Time slots (T'+ 1) 6
C 20
D 0.3-0.7

Table 5.14: Range of parameters for regret analysis

Objective Function Value f(s;,p;)

‘ Solutions H p=0.3 H p=0.4 H p=20.5 H p=20.6 H p=0.7 ‘

50.3 10969.45 | 9391.80 || 7806.25 | 6212.80 | 4611.45
80.4 10949.46 || 9414.64 || 7860.5 6287.04 || 4694.26
80.5 10908.43 || 9399.12 || 7867.75 || 6314.32 | 4738.83
50.6 10855.61 || 9374.44 || 7866.25 | 6331.04 | 4768.81
80.7 10571.65 || 9189.20 || 7762.25 | 6290.80 | 4774.85

Table 5.15: Objective function table

Regret Function value r(s;, p;)

\ Solutions H p=0.3 H p=04 H p=0.5 H p=20.6 H p=0.7 “ Maximum regret

50.3 0 22.84 61.5 118.24 || 163.4 163.4

S0.4 19.99 0 7.25 44 80.59 80.59

50.5 61.02 15.52 0 16.72 36.02 61.02

50.6 113.84 || 40.2 1.5 0 6.04 113.84

S0.7 397.8 || 225.44 || 105.5 40.24 0 397.8
Minimax regret H 61.02 H

Table 5.16: Regret table
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regret obtained. Thus the optimal solution with least maximum regret is the optimal
solution for p = 0.5 (sg5) with maximum regret of 61.02 for p = 0.3.

Since we considered solutions for p in intervals of 0.1, we might have missed few
more solutions for p values between the intervals used for the analysis. Thus we carry
out the analysis for the same set of parameters (or same scenario) with an interval
of 0.01 for p € [0.3,0.7]. Due to space constraint we do not show the entire tabular
results. Instead we present only the final result.

The optimal solution with least maximum regret is sjo.45,0.45) With the maximum
regret of 58.71. Regret analysis aids in making decision when the value of the param-

eters is uncertain.

5.5 Chapter Summary

In this chapter, a detailed description of the software implementation is presented
followed by a detailed analysis of a scenario. Analysis of Variance is conducted to
determine the effect of the problem parameters on the response variable Time and
Deviation. The results of the experiment shows that CG performs better in terms of
computational time and CPLEX performs better in terms of solution quality. Com-
putational Results for some large size problems are also shown. A regret analysis is
carried out to find the solution with least maximum regret for all values of p within

the specified range.
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Chapter 6

Conclusion and Future Research

In this work, we modeled a communication network problem of finding optimal loca-
tion of AWACS for collecting data from sensors spread over a geographically dispersed
area for the purpose of data fusion. We model the problem as a covering location
problem incorporating issues of link failure and mobility of the system entities (sen-
sors). Several variants of the problems were modeled. One of the variant deals with
clustering sensors in wireless ad hoc network in order to maximize the expected de-
mand covered. In this variant, the cluster heads are elected among the set of sensors
and thus they are also mobile. Thus our work can be viewed as a contribution to
the covering location literature as well as a new clustering technique for the ad hoc
networks.

Two greedy heuristics and a Column Generation heuristic is proposed to solve the
Dynamic MEXCLP model. The results show that the Column Generation heuristic
used in conjunction with the two greedy heuristic: Relocation Heuristic (RH) and
No-Relocation Heuristic (NRH) performs better in terms of computational time than
solving Dynamic MEXCLP using commercially available CPLEX mixed integer pro-
gram (MIP) solver. Also the results of the analysis of variance shows that CG gap
with LP relaxation of the original problem is within 1.8%.

We can conclude that the solution methodology proposed in this work solves
the problem with a resonable accuracy, efficiently. Although we have not completely

captured the scenario since we are dealing at only one level of the data fusion network
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architecture. Future work can involve locating the cluster heads considering that all
clusterheads should have atleast one path between themselves in order to share the
data collected from the sensors in their clusters. In this work we assume that each
cluster head is connected to other clusterheads via a virtual “clusterhead manager”.

This work does not capture the issue of load balancing, i.e. capacity of each cluster
head in terms of handling data or handling number of sensors.

Developing a simulation model with commercially available network simulator
such as OPNET and integrating the solution methodology could be a mechanism to

validate the performance of these clusters under realistic (simulated) conditions.
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